Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.

Prime rectangles: ≥ 1.

Smallest known rectangle (14x19):

Blue number (*P*) - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number (*W*) - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Red number (*C*) - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | ?? | |||||||||||||

2 | ?? | ?? | ||||||||||||

3 | ?? | ?? | ?? | |||||||||||

4 | ?? | ?? | ?? | ?? | ||||||||||

5 | ?? | ?? | ?? | ?? | ?? | |||||||||

6 | ?? | ?? | ?? | ?? | ?? | ?? | ||||||||

7 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | |||||||

8 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ||||||

9 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | |||||

10 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ||||

11 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | |||

12 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ||

13 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | |

14 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? |

15 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? |

16 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? |

17 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? |

18 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? |

19 | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ?? | ≥1≥1P |