POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


Dominoes and L triomino

Prime rectangles: ≥ 7.

Smallest rectangle tilings

Smallest rectangle (2x4):

Smallest square (3x3):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
N>0
1
0
2
0
0
3
0
0
8
4
0
6
40
344
5
0
16
140
2224
21272
6
0
36
584
14872
260936
5343916
7
0
96
1984
95358
≥1
≥1
≥1
8
0
224
7658
617528
≥1
≥1
≥1
≥1
9
0
506
26676
3956310
≥1
≥1
≥1
≥1
≥1
10
0
1166
99018
≥1
≥1
≥1
≥1
≥1
≥1
≥1
11
0
2624
351080
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
12
0
5856
1281052
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
13
0
13088
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
14
0
29088
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
15
0
64482
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
16
0
142870
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
17
0
316048
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
18
0
698520
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
19
0
1543232
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
20
0
3407680
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
21
0
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
N>0
x
all
all
all
all
all
all
?
?
?
?
?
?
?
?
?
?
?
?
?

Smallest prime reptiles

Smallest prime reptiles (2Ix2, 3Lx2):

Reptile tilings' solutions count (including symmetric)

polyomino \ n²
I domino
0
6
584
617528
L triomino
0
34
28983
≥212429632

Smallest common multiples

Smallest common multiple (area 6):

Common multiples' solutions count (excluding symmetric)

area
6
solutions
≥3

Formulas

$N(w; h)$ - number of ways to tile $w\times h$ rectangle (including symmetric solutions)

$T(w; h) = \begin{cases} 1, & N(w; h) \geq 1 \\ 0, & \text{else} \end{cases}$ - tileability function, $1$ if tiles rectangle, $0$ otherwise

$A(w; h) = \left(N(w; h)\right)^{\frac{1}{wh}}$ - average number of ways to tile cell in $w\times h$ rectangle (including symmetric solutions)

$G(T; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}T(w; h)x^wy^h$ - bivariate generating function of $T(w; h)$

$G(A; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}A(w; h)x^wy^h$ - bivariate generating function of $A(w; h)$

$N(1; h) = 0 \tag{1}$

See Also

Dominoes and I triominoDominoes and I tetromino