POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


L1 20-omino

Area: 20.

Perimeter: 18.

Size: 3x10.

Is rectangular: no.

Is convex: yes.

Holes: 0.

Order: 12.

Square order: 20.

Prime rectangles: ≥ 3.

Smallest rectangle tilings

Smallest rectangle (12x20):

Smallest square (20x20):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1-11
12
13-15
16
17-19
20
21-23
24
25-27
28
29-31
32
N>0
1-11
0
12
0
0
13-15
0
0
0
16
0
0
0
0
17-19
0
0
0
0
0
20
0
2
0
2
0
2
21-23
0
0
0
0
0
0
0
24
0
0
0
0
0
6
0
0
25-27
0
0
0
0
0
0
0
0
0
28
0
0
0
0
0
10
0
0
0
0
29-31
0
0
0
0
0
0
0
0
0
0
0
32
0
0
0
0
0
14
0
0
0
0
0
0
33
0
0
0
0
0
0
0
0
0
0
0
0
?
34
0
0
0
0
0
0
0
0
0
0
0
0
?
35
0
0
0
0
0
0
0
0
0
0
0
0
?
36
0
0
0
0
0
26
0
0
0
0
0
0
?
37
0
0
0
0
0
0
0
0
0
0
0
0
?
38
0
0
0
0
0
0
0
0
0
0
0
0
?
39
0
0
0
0
0
0
0
0
0
0
0
0
?
40
0
4
0
4
0
46
0
40
0
106
0
624
?
41
0
0
0
0
0
0
0
0
0
0
0
0
?
42
0
0
0
0
0
0
0
0
0
0
0
0
?
43
0
0
0
0
0
0
0
0
0
0
0
0
?
44
0
0
0
0
0
74
0
0
0
0
0
0
?
45
0
0
0
0
0
0
0
0
0
0
0
0
?
46
0
0
0
0
0
0
0
0
0
0
0
0
?
47
0
0
0
0
0
0
0
0
0
0
0
0
?
48
0
0
0
0
0
126
0
0
0
0
0
0
?
49
0
0
0
0
0
0
0
0
0
0
0
0
?
50
0
0
0
0
0
0
0
0
0
0
0
0
?
51
0
0
0
0
0
0
0
0
0
0
0
0
?
52
0
0
0
0
0
218
0
0
0
0
0
0
?
53
0
0
0
0
0
0
0
0
0
0
0
0
?
54
0
0
0
0
0
0
0
0
0
0
0
0
?
55
0
0
0
0
0
0
0
0
0
0
0
0
?
56
0
0
0
0
0
366
0
0
0
0
0
0
?
57
0
0
0
0
0
0
0
0
0
0
0
0
?
58
0
0
0
0
0
0
0
0
0
0
0
0
?
59
0
0
0
0
0
0
0
0
0
0
0
0
?
60
0
8
0
8
0
618
0
272
0
1138
0
24952
?
61
0
0
0
0
0
0
0
0
0
0
0
0
?
62
0
0
0
0
0
0
0
0
0
0
0
0
?
63
0
0
0
0
0
0
0
0
0
0
0
0
?
64
0
0
0
0
0
1054
0
0
0
0
0
0
?
65
0
0
0
0
0
0
0
0
0
0
0
0
?
66
0
0
0
0
0
0
0
0
0
0
0
0
?
67
0
0
0
0
0
0
0
0
0
0
0
0
?
68
0
0
0
0
0
1786
0
0
0
0
0
0
?
69
0
0
0
0
0
0
0
0
0
0
0
0
?
70
0
0
0
0
0
0
0
0
0
0
0
0
?
71
0
0
0
0
0
0
0
0
0
0
0
0
?
72
0
0
0
0
0
3022
0
0
0
0
0
0
?
73
0
0
0
0
0
0
0
0
0
0
0
0
?
74
0
0
0
0
0
0
0
0
0
0
0
0
?
75
0
0
0
0
0
0
0
0
0
0
0
0
?
76
0
0
0
0
0
5130
0
0
0
0
0
0
?
77
0
0
0
0
0
0
0
0
0
0
0
0
?
78
0
0
0
0
0
0
0
0
0
0
0
0
?
79
0
0
0
0
0
0
0
0
0
0
0
0
?
80
0
16
0
16
0
8702
0
1856
0
12250
0
1003728
?
81
0
0
0
0
0
0
0
0
0
0
0
0
?
82
0
0
0
0
0
0
0
0
0
0
0
0
?
83
0
0
0
0
0
0
0
0
0
0
0
0
?
84
0
0
0
0
0
14746
0
0
0
0
0
0
?
85
0
0
0
0
0
0
0
0
0
0
0
0
?
86
0
0
0
0
0
0
0
0
0
0
0
0
?
87
0
0
0
0
0
0
0
0
0
0
0
0
?
88
0
0
0
0
0
25006
0
0
0
0
0
0
?
89
0
0
0
0
0
0
0
0
0
0
0
0
?
90
0
0
0
0
0
0
0
0
0
0
0
0
?
91
0
0
0
0
0
0
0
0
0
0
0
0
?
92
0
0
0
0
0
42410
0
0
0
0
0
0
?
93
0
0
0
0
0
0
0
0
0
0
0
0
?
94
0
0
0
0
0
0
0
0
0
0
0
0
?
95
0
0
0
0
0
0
0
0
0
0
0
0
?
96
0
0
0
0
0
71902
0
0
0
0
0
0
?
97
0
0
0
0
0
0
0
0
0
0
0
0
?
98
0
0
0
0
0
0
0
0
0
0
0
0
?
99
0
0
0
0
0
0
0
0
0
0
0
0
?
100
0
32
0
32
0
121914
0
12672
0
131938
0
40362944
?
N>0
x
20k
x
20k
x
4k
x
20k
x
20k
x
20k

Formulas

$N(w; h)$ - number of ways to tile $w\times h$ rectangle (including symmetric solutions)

$T(w; h) = \begin{cases} 1, & N(w; h) \geq 1 \\ 0, & \text{else} \end{cases}$ - tileability function, $1$ if tiles rectangle, $0$ otherwise

$A(w; h) = \left(N(w; h)\right)^{\frac{1}{wh}}$ - average number of ways to tile cell in $w\times h$ rectangle (including symmetric solutions)

$G(T; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}T(w; h)x^wy^h$ - bivariate generating function of $T(w; h)$

$G(A; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}A(w; h)x^wy^h$ - bivariate generating function of $A(w; h)$

$N(12; n) = 2 \times N(12; n - 20), \qquad n \geq 21 \tag{1}$

$G(N(12); x) = \frac{1}{1 - 2x^{20}} \tag{2}$

$N(16; n) = 2 \times N(16; n - 20), \qquad n \geq 21 \tag{3}$

$G(N(16); x) = \frac{1}{1 - 2x^{20}} \tag{4}$

$G(N(20); x) = \frac{1 - x^4}{1 - x^4 - 2x^{12}} \tag{5}$

$G(N(24); x) = \frac{1 - 2x^{20}}{1 - 8x^{20} + 8x^{40}} \tag{6}$

$G(N(28); x) = \frac{1 - 3x^{20}}{1 - 13x^{20} + 24x^{40}} \tag{7}$

$G(N(32); x) = \frac{1 - 24x^{20} - 8x^{40} + 256x^{60}}{1 - 38x^{20} - 100x^{40} + 416x^{60} + 1024x^{80}} \tag{8}$

See Also

DominoesTriominoes