POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


I triomino and I heptomino

Prime rectangles: 29.

Smallest rectangle tilings

Smallest rectangle (1x10):

Smallest square (7x7):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
N>0
1
0
2
0
0
3
0
0
0
4
0
0
0
0
5
0
0
0
0
0
6
0
0
0
0
0
0
7
0
0
0
18
27
36
872
8
0
0
2
2
2
92
1762
784
9
0
0
3
6
9
183
3333
9488
≥1
10
2
4
12
180
602
2024
32811
153374
≥1
≥1
11
0
0
23
38
86
5443
82848
135336
≥1
≥1
≥1
12
0
0
36
88
164
11500
194160
708824
≥1
≥1
≥1
≥1
13
3
9
78
1369
7952
58168
1237164
10371771
≥1
≥1
≥1
≥1
≥1
14
0
0
140
986
3279
166736
4008764
21654524
≥1
≥1
≥1
≥1
≥1
≥1
15
0
0
228
882
2432
384844
10410561
58392248
≥1
≥1
≥1
≥1
≥1
≥1
≥1
16
4
16
406
9420
85236
1356288
48448618
666242090
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
17
3
9
713
12217
92015
4154213
180801863
2.38163051×10¹⁰
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
18
0
0
1173
8386
42387
10353299
510025879
5.21886007×10¹⁰
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
19
5
25
1951
61639
819211
30269169
1.96370145×10¹⁰
4.25920317×10¹¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
20
6
36
3382
115722
1776372
97430484
7.73201047×10¹⁰
2.10568313×10¹²
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
21
0
2
5616
95434
1007580
259345162
2.40563853×10¹¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
22
6
36
9155
401164
7604076
697439743
8.37816572×10¹¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
23
10
100
15578
960362
26969690
2.23867175×10¹⁰
3.27051378×10¹²
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
24
4
24
25908
1043028
22638146
6.26703162×10¹⁰
1.10288822×10¹³
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
25
7
49
42087
2679641
72956530
1.65177538×10¹¹
3.69101068×10¹³
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
26
15
225
70172
7375463
350843478
5.08334607×10¹¹
1.39000620×10¹⁴
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
27
10
120
116424
10290078
446387092
1.47691908×10¹²
4.93321829×10¹⁴
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
28
8
80
189598
19264432
815952451
3.95265266×10¹²
1.64970419×10¹⁵
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
29
21
441
311433
54231795
4.15362508×10¹⁰
1.15754286×10¹³
5.98444468×10¹⁵
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
30
20
440
514874
92736094
7.68532948×10¹⁰
3.43587843×10¹³
2.17331808×10¹⁶
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
31
14
196
840731
150666474
1.10378658×10¹¹
9.43954383×10¹³
7.39395364×10¹⁶
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
32
28
784
1369896
391582060
4.69346124×10¹¹
2.66781766×10¹⁴
2.61068845×10¹⁷
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
33
35
1295
2254982
779830095
1.17482497×10¹²
7.95161650×10¹⁴
9.50812320×10¹⁷
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
34
25
625
3687489
1.24439890×10¹⁰
1.68447478×10¹²
2.24034397×10¹⁵
3.30166833×10¹⁸
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
35
36
1368
5993524
2.84786330×10¹⁰
5.34619717×10¹²
6.23923696×10¹⁵
1.15028483×10¹⁹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
36
56
3248
9819893
6.24183077×10¹⁰
1.63588113×10¹³
1.84142793×10¹⁶
4.15727354×10¹⁹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
37
46
2116
16059523
1.04496024×10¹¹
2.65443181×10¹³
5.28695168×10¹⁶
1.46655639×10²⁰
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
38
51
2601
26106833
2.12548633×10¹¹
6.43525664×10¹³
1.47384761×10¹⁷
5.09695765×10²⁰
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
39
84
7224
42599465
4.83681933×10¹¹
2.13180377×10¹⁴
4.28184334×10¹⁷
1.82264234×10²¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
40
82
6724
69610782
8.69967633×10¹¹
4.09014113×10¹⁴
1.24276803×10¹⁸
6.48587268×10²¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
41
76
5776
113255418
1.63798457×10¹²
8.35122509×10¹⁴
3.49478766×10¹⁸
2.26274783×10²²
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
42
120
14882
184317914
3.68633259×10¹²
2.67796822×10¹⁵
1.00159439×10¹⁹
8.01994336×10²²
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
43
139
19321
300809111
7.10515872×10¹²
6.03040777×10¹⁵
2.91634516×10¹⁹
2.86123453×10²³
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
44
122
14884
489726475
1.29585122×10¹³
1.15443363×10¹⁶
8.28612920×10¹⁹
1.00409955×10²⁴
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
45
172
29928
796111083
2.80151150×10¹³
3.33971337×10¹⁶
2.35707023×10²⁰
3.54004950×10²⁴
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
46
224
50176
1.29744986×10¹⁰
5.68567577×10¹³
8.48668273×10¹⁶
6.84588449×10²⁰
1.26131342×10²⁵
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
47
204
41616
2.11277331×10¹⁰
1.04017393×10¹⁴
1.65119383×10¹⁷
1.96167506×10²¹
4.44959212×10²⁵
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
48
248
62000
3.43399905×10¹⁰
2.14412151×10¹⁴
4.23489225×10¹⁷
5.57165378×10²¹
1.56579972×10²⁶
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
49
345
119715
5.58957472×10¹⁰
4.47512318×10¹⁴
1.14929138×10¹⁸
1.60977947×10²²
5.56270877×10²⁶
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
50
343
117649
9.10089715×10¹⁰
8.37710686×10¹⁴
2.37678665×10¹⁸
4.63718715×10²²
1.96904819×10²⁷
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
51
370
137640
1.47953250×10¹¹
1.66046929×10¹⁵
5.53171252×10¹⁸
1.32004916×10²³
6.93211192×10²⁷
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
52
519
269361
2.40618461×10¹¹
3.48558831×10¹⁵
1.51779876×10¹⁹
3.79436403×10²³
2.45565664×10²⁸
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
53
567
321489
3.91636080×10¹¹
6.71856386×10¹⁵
3.38180827×10¹⁹
1.09524882×10²⁴
8.70509028×10²⁸
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
54
574
330624
6.36839020×10¹¹
1.30100570×10¹⁶
7.44661602×10¹⁹
3.12932600×10²⁴
3.06933709×10²⁹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
55
768
589824
1.03524925×10¹²
2.70340721×10¹⁶
1.98362209×10²⁰
8.96469226×10²⁴
1.08511300×10³⁰
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
56
912
833568
1.68427584×10¹²
5.34825680×10¹⁶
4.71963855×10²⁰
2.58662390×10²⁵
3.84681089×10³⁰
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
57
917
842723
2.73917096×10¹²
1.02790027×10¹⁷
1.02425460×10²¹
7.41609654×10²⁵
1.35858774×10³¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
58
1139
1297321
4.45229051×10¹²
2.09846345×10¹⁷
2.59824482×10²¹
2.12187100×10²⁶
4.79842108×10³¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
59
1432
2050624
7.24071501×10¹²
4.22519222×10¹⁷
6.45957958×10²¹
6.11193143×10²⁶
1.69989112×10³²
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
60
1484
2205224
1.17758093×10¹³
8.15367221×10¹⁷
1.42276886×10²²
1.75654454×10²⁷
6.01098577×10³²
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
61
1714
2937796
1.91414415×10¹³
1.63520103×10¹⁸
3.43921356×10²²
5.02763113×10²⁷
2.12273385×10³³
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
62
2200
4840000
3.11206411×10¹³
3.31857055×10¹⁸
8.70921057×10²²
1.44540312×10²⁸
7.51340039×10³³
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
63
2396
5750402
5.06082846×10¹³
6.46936044×10¹⁸
1.97605181×10²³
4.15873626×10²⁸
2.65859154×10³⁴
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
64
2632
6927424
8.22702312×10¹³
1.28037575×10¹⁹
4.61339702×10²³
1.19174010×10²⁹
9.39175263×10³⁴
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
65
3339
11148921
1.33735828×10¹⁴
2.59790125×10¹⁹
1.16427446×10²⁴
3.42123626×10²⁹
3.32182634×10³⁵
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
66
3829
14668899
2.17453687×10¹⁴
5.12220290×10¹⁹
2.72721190×10²⁴
9.84466123×10²⁹
1.17562846×10³⁶
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
67
4117
16949689
3.53520903×10¹⁴
1.00673471×10²⁰
6.26032173×10²⁴
2.82482802×10³⁰
4.15505415×10³⁶
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
68
5053
25532809
5.74640854×10¹⁴
2.03190803×10²⁰
1.55318661×10²⁵
8.10381093×10³⁰
1.46900888×10³⁷
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
69
6029
36360899
9.34248040×10¹⁴
4.04343121×10²⁰
3.73170270×10²⁵
2.33070806×10³¹
5.19831491×10³⁷
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
70
6514
42445224
1.51886672×10¹⁵
7.93685986×10²⁰
8.55680054×10²⁵
6.69454609×10³¹
1.83803923×10³⁸
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
71
7685
59059225
2.46890295×10¹⁵
1.59056674×10²¹
2.07772692×10²⁶
1.92041575×10³²
6.49741465×10³⁸
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
72
9368
87778160
4.01355235×10¹⁵
3.18294841×10²¹
5.06591657×10²⁶
5.51939855×10³²
2.29863737×10³⁹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
73
10345
107019025
6.52499772×10¹⁵
6.26367157×10²¹
1.17250467×10²⁷
1.58624580×10³³
8.12982608×10³⁹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
74
11802
139287204
1.06066251×10¹⁶
1.24724214×10²²
2.79414523×10²⁷
4.55189845×10³³
2.87399970×10⁴⁰
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
75
14421
207994083
1.72416177×10¹⁶
2.50065844×10²²
6.83933267×10²⁷
1.30747491×10³⁴
1.01651106×10⁴¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
76
16375
268140625
2.80294844×10¹⁶
4.94198798×10²²
1.60476447×10²⁸
3.75818232×10³⁴
3.59560735×10⁴¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
77
18316
335512488
4.55641538×10¹⁶
9.79827294×10²²
3.77857253×10²⁸
1.07895728×10³⁵
1.27126114×10⁴²
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
78
22106
488719448
7.40652781×10¹⁶
1.96274011×10²³
9.20991726×10²⁸
3.09810282×10³⁵
4.49560560×10⁴²
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
79
25744
662753536
1.20402588×10¹⁷
3.89540366×10²³
2.18934464×10²⁹
8.90403234×10³⁵
1.59018347×10⁴³
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
80
28662
821510244
1.95726622×10¹⁷
7.70853799×10²³
5.13171801×10²⁹
2.55735887×10³⁶
5.62302600×10⁴³
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
81
33908
1.14982028×10¹⁰
3.18156884×10¹⁷
1.54040273×10²⁴
1.24025906×10³⁰
7.34246872×10³⁶
1.98833555×10⁴⁴
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
82
40166
1.61330755×10¹⁰
5.17189263×10¹⁷
3.06686476×10²⁴
2.97583112×10³⁰
2.10973947×10³⁷
7.03269085×10⁴⁴
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
83
45037
2.02833136×10¹⁰
8.40744377×10¹⁷
6.06941987×10²⁴
6.98549939×10³⁰
6.06103984×10³⁷
2.48707618×10⁴⁵
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
84
52224
2.72755507×10¹⁰
1.36665726×10¹⁸
1.20952780×10²⁵
1.67311464×10³¹
1.74033236×10³⁸
8.79437150×10⁴⁵
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
85
62273
3.87792652×10¹⁰
2.22156833×10¹⁸
2.41214635×10²⁵
4.03238742×10³¹
4.99940250×10³⁸
3.11031045×10⁴⁶
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
86
70781
5.00994996×10¹⁰
3.61136194×10¹⁸
4.77986506×10²⁵
9.51296670×10³¹
1.43641797×10³⁹
1.10000563×10⁴⁷
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
87
80887
6.54286854×10¹⁰
5.87044727×10¹⁸
9.50404374×10²⁵
2.26249598×10³²
4.12510239×10³⁹
3.88976826×10⁴⁷
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
88
96182
9.25097712×10¹⁰
9.54262420×10¹⁸
1.89599196×10²⁶
5.45369508×10³²
1.18482136×10⁴⁰
1.37561322×10⁴⁸
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
89
110947
1.23092368×10¹¹
1.55122497×10¹⁹
3.76350433×10²⁶
1.29432760×10³³
3.40415008×10⁴⁰
4.86511628×10⁴⁸
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
90
125924
1.58571056×10¹¹
2.52161010×10¹⁹
7.47300467×10²⁶
3.06631143×10³³
9.77758337×10⁴⁰
1.72044318×10⁴⁹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
91
148407
2.20249344×10¹¹
4.09896700×10¹⁹
1.48991401×10²⁷
7.37125581×10³³
2.80816022×10⁴¹
6.08412018×10⁴⁹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
92
173220
3.00051684×10¹¹
6.66311770×10¹⁹
2.96200774×10²⁷
1.75837585×10³⁴
8.06759874×10⁴¹
2.15173776×10⁵⁰
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
93
196705
3.86932504×10¹¹
1.08313278×10²⁰
5.87882202×10²⁷
4.16202376×10³⁴
2.31748256×10⁴²
7.60943149×10⁵⁰
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
94
229296
5.25766556×10¹¹
1.76067691×10²⁰
1.17087419×10²⁸
9.96654099×10³⁴
6.65596199×10⁴²
2.69094486×10⁵¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
95
269402
7.25774376×10¹¹
2.86206936×10²⁰
2.33016634×10²⁸
2.38513266×10³⁵
1.91203181×10⁴³
9.51670905×10⁵¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
96
307652
9.46503684×10¹¹
4.65247479×10²⁰
4.62579689×10²⁸
5.65303165×10³⁵
5.49277103×10⁴³
3.36557704×10⁵²
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
97
355221
1.26181958×10¹²
7.56282050×10²⁰
9.20364939×10²⁸
1.34878431×10³⁶
1.57763790×10⁴⁴
1.19018405×10⁵³
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
98
417809
1.74565196×10¹²
1.22937150×10²¹
1.83247320×10²⁹
3.23156950×10³⁶
4.53171421×10⁴⁴
4.20907936×10⁵³
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
99
480872
2.31238842×10¹²
1.99841648×10²¹
3.63991670×10²⁹
7.67769789×10³⁶
1.30185318×10⁴⁵
1.48855124×10⁵⁴
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
100
551927
3.04623413×10¹²
3.24853189×10²¹
7.23656768×10²⁹
1.82722498×10³⁷
3.73941197×10⁴⁵
5.26409156×10⁵⁴
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
N>0
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all

Formulas

$N(w; h)$ - number of ways to tile $w\times h$ rectangle (including symmetric solutions)

$T(w; h) = \begin{cases} 1, & N(w; h) \geq 1 \\ 0, & \text{else} \end{cases}$ - tileability function, $1$ if tiles rectangle, $0$ otherwise

$A(w; h) = \left(N(w; h)\right)^{\frac{1}{wh}}$ - average number of ways to tile cell in $w\times h$ rectangle (including symmetric solutions)

$G(T; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}T(w; h)x^wy^h$ - bivariate generating function of $T(w; h)$

$G(A; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}A(w; h)x^wy^h$ - bivariate generating function of $A(w; h)$

$G(N(1); x) = \frac{2x^{10} + 2x^{11} + 2x^{12} + x^{13} + x^{14} + x^{15} + x^{16}}{1 + x + x^2 - x^3 - x^4 - x^5 - 2x^7 - 2x^8 - 2x^9 + x^{10} + x^{11} + x^{12} + x^{14} + x^{15} + x^{16}} \tag{1}$

$G(N(2); x) = \frac{4x^{10} + 4x^{11} + 4x^{12} + x^{13} + x^{14} - 3x^{15} - 2x^{16} - 13x^{17} - 14x^{18} - 14x^{19} - 14x^{20} - 14x^{21} - 7x^{22} - 7x^{23} + 4x^{24} + 6x^{25} + 6x^{26} + 9x^{27} + 10x^{28} + 6x^{29} + 7x^{30} + 2x^{31} - 2x^{34} - 2x^{35} - x^{36} - x^{37}}{1 + x + x^2 - 2x^3 - 2x^4 - 3x^5 - 5x^7 - 3x^8 - 4x^9 + 5x^{10} + 4x^{11} + 8x^{12} + 3x^{13} + 13x^{14} + 9x^{15} + 10x^{16} + x^{18} - 5x^{19} - 4x^{20} - 15x^{21} - 12x^{22} - 13x^{23} - 7x^{24} - 5x^{25} - x^{26} + 2x^{27} + 8x^{28} + 6x^{29} + 7x^{30} + 4x^{31} + 2x^{32} + x^{33} - x^{34} - 2x^{35} - x^{36} - x^{37}} \tag{2}$

See Also

I triomino and T1 hexominoL triomino and I tetromino