POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


I tetromino and P pentomino

Prime rectangles: ≥ 26.

Smallest rectangle tilings

Smallest rectangles (2x9, 3x6):

Smallest square (6x6):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
N>0
1
0
2
0
0
3
0
0
0
4
0
0
0
0
5
0
0
0
0
0
6
0
0
2
12
24
124
7
0
0
0
46
28
486
2312
8
0
0
2
84
324
≥1000
≥1000
≥1000
9
0
6
0
186
416
≥1000
≥1000
≥1000
≥1
10
0
0
6
308
2962
≥1000
≥1000
≥1000
≥1
≥1
11
0
0
20
750
5048
≥1000
≥1000
≥1000
≥1
≥1
≥1
12
0
0
14
≥1000
≥1000
≥1000
≥1000
≥1000
≥1
≥1
≥1
≥1
13
0
12
0
≥1000
≥1000
≥1000
≥1000
≥1000
≥1
≥1
≥1
≥1
≥1
14
0
20
106
≥1000
≥1000
≥1000
≥1000
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
15
0
0
120
≥1000
≥1000
≥1000
≥1000
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
16
0
0
56
≥1000
≥1000
≥1000
≥1000
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
17
0
20
296
≥1000
≥1000
≥1000
≥1000
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
18
0
60
686
≥1000
≥1000
≥1000
≥1000
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
19
0
56
532
≥1000
≥1000
≥1000
≥1000
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
20
0
0
930
≥1000
≥1000
≥1000
≥1000
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
21
0
30
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
22
0
140
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
23
0
224
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
24
0
144
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
25
0
42
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
26
0
280
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
27
0
672
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
28
0
720
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
29
0
408
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
30
0
504
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
N>0
x
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all

See Also

I tetromino and N pentominoI tetromino and R pentomino