POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


O tetromino and V pentomino

Prime rectangles: ≥ 5.

Smallest rectangle tilings

Smallest rectangle and smallest square (3x3):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
N>0
1
0
2
0
0
3
0
0
4
4
0
0
0
0
5
0
0
0
0
0
6
0
0
16
0
32
256
7
0
0
0
0
0
48
0
8
0
0
0
0
0
768
0
2048
9
0
0
64
0
0
4160
0
0
≥1
10
0
0
0
0
0
1536
0
12032
?
?
11
0
0
0
0
0
16464
0
0
?
?
?
12
0
0
256
0
1024
68096
11008
661248
≥1
≥1
≥1
≥1
13
0
0
0
0
0
41056
0
0
?
?
?
≥1
?
14
0
0
0
0
0
331520
0
≥1
?
≥1
?
≥1
?
≥1
15
0
0
1024
0
0
1130608
0
?
≥1
?
?
≥1
?
?
≥1
16
?
?
?
?
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
17
?
?
?
?
?
≥1
?
?
?
?
?
≥1
?
?
?
?
?
18
?
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
19
?
?
?
?
?
≥1
?
?
?
?
?
≥1
?
?
?
?
?
≥1
?
20
?
?
?
?
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
21
?
?
≥1
?
?
≥1
?
?
≥1
?
?
≥1
?
?
≥1
?
?
≥1
?
?
?
N>0
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

See Also

O tetromino and T pentominoO tetromino and Y pentomino