POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


I pentomino and W pentomino

Prime rectangles: ≥ 68.

Smallest rectangle tilings

Smallest rectangle (12x15):

Smallest square (15x15):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1-6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
N>0
1-6
0
7
0
0
8
0
0
0
9
0
0
0
0
10
0
0
0
0
0
11
0
0
0
0
0
0
12
0
0
0
0
0
0
0
13
0
0
0
0
0
0
0
0
14
0
0
0
0
0
0
0
0
0
15
0
0
0
0
0
0
12
24
36
96
16
0
0
0
0
0
0
0
0
0
352
?
17
0
0
0
0
0
0
0
0
0
≥1000
?
?
18
0
0
0
0
0
0
0
0
0
≥1000
?
?
?
19
0
0
0
0
0
0
0
0
0
≥1000
?
?
?
?
20
0
0
0
0
0
154
≥1000
≥1000
≥1000
≥1000
?
?
?
?
?
21
0
0
0
0
0
0
0
0
0
≥1000
?
?
?
?
?
?
22
0
0
0
0
0
0
0
0
0
≥1000
?
?
?
?
≥1
?
23
0
0
0
0
0
0
0
0
0
≥1000
?
?
?
?
≥1
?
24
0
0
0
0
0
0
0
0
0
≥1000
?
?
?
?
≥1
?
25
0
0
0
0
0
≥1000
≥1000
≥1000
≥1000
≥1000
?
?
?
?
≥1
?
26
0
0
0
0
0
?
?
?
?
≥1
?
?
?
?
≥1
?
27
0
0
0
0
0
?
?
?
?
≥1
?
?
?
?
≥1
?
28
0
0
0
0
0
?
?
?
?
≥1
?
?
?
?
≥1
?
29
0
0
0
0
0
?
?
?
?
≥1
?
?
?
?
≥1
?
30
0
2
4
6
8
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
31
0
0
0
0
16
?
?
?
?
≥1
?
?
?
?
≥1
?
32
0
0
0
0
28
?
?
?
?
≥1
?
?
?
?
≥1
?
33
0
0
0
0
40
?
?
?
?
≥1
?
?
?
?
≥1
?
34
0
0
0
0
52
?
?
?
?
≥1
?
?
?
?
≥1
?
35
0
86
180
282
456
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
36
0
0
0
0
1012
?
?
?
?
≥1
?
?
?
?
≥1
?
37
0
0
0
0
2040
?
?
?
?
≥1
?
?
?
?
≥1
?
38
0
0
0
0
3348
?
?
?
?
≥1
?
?
?
?
≥1
?
39
0
0
0
0
5032
?
?
?
?
≥1
?
?
?
?
≥1
?
40
0
1948
4318
7152
17538
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
41
0
0
0
0
39566
?
?
?
?
≥1
?
?
?
?
≥1
?
42
0
0
0
0
85758
?
?
?
?
≥1
?
?
?
?
≥1
?
43
0
0
0
0
155990
?
?
?
?
≥1
?
?
?
?
≥1
?
44
0
0
0
0
262650
?
?
?
?
≥1
?
?
?
?
≥1
?
45
0
31372
74546
132370
616876
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
46
0
0
0
0
1321406
?
?
?
?
≥1
?
?
?
?
≥1
?
47
0
0
0
0
2874696
?
?
?
?
≥1
?
?
?
?
≥1
?
48
0
0
0
0
5558600
?
?
?
?
≥1
?
?
?
?
≥1
?
49
0
0
0
0
10128266
?
?
?
?
≥1
?
?
?
?
≥1
?
50
0
407648
1050696
2030910
20598752
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
51
0
0
0
0
41682938
?
?
?
?
≥1
?
?
?
?
≥1
?
52
0
0
0
0
87662848
?
?
?
?
≥1
?
?
?
?
≥1
?
53
0
0
0
0
173514834
?
?
?
?
≥1
?
?
?
?
≥1
?
54
0
0
0
0
330756744
?
?
?
?
≥1
?
?
?
?
≥1
?
55
0
4583156
12955498
27685906
645421442
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
56
0
0
0
0
1.26425306×10¹⁰
?
?
?
?
≥1
?
?
?
?
≥1
?
57
0
0
0
0
2.56184264×10¹⁰
?
?
?
?
≥1
?
?
?
?
≥1
?
58
0
0
0
0
5.07019369×10¹⁰
?
?
?
?
≥1
?
?
?
?
≥1
?
59
0
0
0
0
9.84820217×10¹⁰
?
?
?
?
≥1
?
?
?
?
≥1
?
60
0
46555914
145781912
349438178
1.90610413×10¹¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
N>0
x
5k
5k
5k
all
?
?
?
?
?
?
?
?
?
?

See Also

I pentomino and V pentominoI pentomino and Y pentomino