POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


I pentomino and Z pentomino

Prime rectangles: ≥ 44.

Smallest rectangle tilings

Smallest rectangle (10x16):

Smallest square (15x15):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1-8
9
10
11
12
13
14
15
16
17
18
19
20
N>0
1-8
0
9
0
0
10
0
0
0
11
0
0
0
0
12
0
0
0
0
0
13
0
0
0
0
0
0
14
0
0
0
0
0
0
0
15
0
0
0
70
196
322
448
1148
16
0
0
12
0
0
0
0
≥1
0
17
0
0
24
0
0
0
0
≥1
0
?
18
0
0
36
0
0
0
0
≥1
0
?
?
19
0
0
48
0
0
0
0
≥1
0
?
?
?
20
0
0
60
8312
29964
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
21
0
0
436
0
0
0
0
≥1
0
?
?
?
≥1
?
22
0
0
1028
0
0
0
0
≥1
0
?
?
?
≥1
?
23
0
0
1884
0
0
0
0
≥1
0
?
?
?
≥1
?
24
0
0
3052
0
0
0
0
≥1
0
?
?
?
≥1
?
25
0
0
4580
547616
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
26
0
0
13204
0
0
0
0
≥1
0
?
?
?
≥1
?
27
0
0
31038
0
0
0
0
≥1
0
?
?
?
≥1
?
28
0
0
63012
0
0
0
0
≥1
0
?
?
?
≥1
?
29
0
0
115466
0
0
0
0
≥1
0
?
?
?
≥1
?
30
0
0
196324
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
31
0
0
414150
0
0
0
0
≥1
0
?
?
?
≥1
?
32
0
0
890532
0
0
0
0
≥1
0
?
?
?
≥1
?
33
0
0
1833986
0
0
0
0
≥1
?
?
?
?
≥1
?
34
0
0
3561336
0
0
0
0
≥1
?
?
?
?
≥1
?
35
0
0
6533022
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
36
0
0
12700544
0
0
0
0
≥1
?
?
?
?
≥1
?
37
0
0
25517810
0
0
0
0
≥1
?
?
?
?
≥1
?
38
0
0
51340860
0
0
0
0
≥1
?
?
?
?
≥1
?
39
0
0
101068552
0
0
0
0
≥1
?
?
?
?
≥1
?
40
0
0
192450324
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
41
0
0
369344562
0
0
0
0
≥1
?
?
?
?
≥1
?
42
0
0
719756504
0
0
0
0
≥1
?
?
?
?
≥1
?
43
0
0
1.41464257×10¹⁰
0
0
0
0
≥1
?
?
?
?
≥1
?
44
0
0
2.76978258×10¹⁰
0
0
0
0
≥1
?
?
?
?
≥1
?
45
0
2
5.34188075×10¹⁰
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
46
0
0
1.02641281×10¹¹
0
0
0
0
≥1
?
?
?
?
≥1
?
47
0
0
1.97954846×10¹¹
0
0
0
0
≥1
?
?
?
?
≥1
?
48
0
0
3.83736075×10¹¹
0
0
0
0
≥1
?
?
?
?
≥1
?
49
0
0
7.44801485×10¹¹
0
0
0
0
≥1
?
?
?
?
≥1
?
50
0
122
1.43797907×10¹²
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
51
0
0
2.76563799×10¹²
0
0
0
0
≥1
?
?
?
?
≥1
?
52
0
0
5.31635662×10¹²
0
0
0
0
≥1
?
?
?
?
≥1
?
53
0
0
1.02366262×10¹³
0
0
0
0
≥1
?
?
?
?
≥1
?
54
0
0
1.97373570×10¹³
0
0
0
0
≥1
?
?
?
?
≥1
?
55
0
3918
3.80033973×10¹³
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
56
0
0
7.30204192×10¹³
0
0
0
0
≥1
?
?
?
?
≥1
?
57
0
0
1.40129697×10¹⁴
0
0
0
0
≥1
?
?
?
?
≥1
?
58
0
0
2.68917327×10¹⁴
0
0
0
0
≥1
?
?
?
?
≥1
?
59
0
0
5.16341945×10¹⁴
0
0
0
0
≥1
?
?
?
?
≥1
?
60
0
88752
9.91142600×10¹⁴
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
61
0
0
1.90078092×10¹⁵
0
0
0
0
≥1
?
?
?
?
≥1
?
62
0
0
3.64186846×10¹⁵
0
0
0
0
≥1
?
?
?
?
≥1
?
63
0
0
6.97449485×10¹⁵
0
0
0
0
≥1
?
?
?
?
≥1
?
64
0
0
1.33562941×10¹⁶
0
0
0
0
≥1
?
?
?
?
≥1
?
65
0
1602330
2.55741589×10¹⁶
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
66
0
0
4.89477664×10¹⁶
0
0
0
0
≥1
?
?
?
?
≥1
?
67
0
0
9.36305317×10¹⁶
0
0
0
0
≥1
?
?
?
?
≥1
?
68
0
0
1.79018613×10¹⁷
0
0
0
0
≥1
?
?
?
?
≥1
?
69
0
0
3.42190835×10¹⁷
0
0
0
0
≥1
?
?
?
?
≥1
?
70
0
24686152
6.53969089×10¹⁷
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
71
0
0
1.24948769×10¹⁸
0
0
0
0
≥1
?
?
?
?
≥1
?
72
0
0
2.38645226×10¹⁸
0
0
0
0
≥1
?
?
?
?
≥1
?
73
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
74
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
75
0
339087718
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
76
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
77
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
78
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
79
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
80
0
4.28007955×10¹⁰
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
81
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
82
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
83
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
84
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
85
0
5.07296101×10¹¹
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
86
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
87
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
88
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
89
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
90
0
5.73537066×10¹²
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
91
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
92
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
93
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
94
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
95
0
6.25641528×10¹³
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
96
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
97
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
98
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
99
0
0
≥1
0
0
0
0
≥1
?
?
?
?
≥1
?
100
0
6.64018944×10¹⁴
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
N>0
x
5k
all
5k
5k
5k
5k
all
?
?
?
?
?

See Also

I pentomino and Y pentominoI pentomino and A hexomino