POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


I pentomino and C hexomino

Prime rectangles: ≥ 80.

Smallest rectangle tilings

Smallest rectangle (14x16):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1-8
9
10
11
12
13
14
15
16
17
18
19
20
N>0
1-8
0
9
0
0
10
0
0
0
11
0
0
0
0
12
0
0
0
0
0
13
0
0
0
0
0
0
14
0
0
0
0
0
0
0
15
0
0
0
0
0
0
0
0
16
0
0
0
0
0
0
≥1
?
?
17
0
0
0
0
0
0
?
?
?
?
18
0
0
0
0
0
0
?
?
?
?
?
19
0
0
0
0
0
0
?
?
?
?
?
?
20
0
0
0
0
0
?
?
?
?
?
?
?
?
21
0
0
0
0
0
?
?
?
?
?
?
?
?
?
22
0
0
0
0
0
?
?
?
?
?
?
?
?
?
23
0
0
0
0
0
?
?
?
?
?
?
?
?
?
24
0
0
0
2
0
?
?
?
?
?
?
?
?
?
25
0
0
0
0
0
?
?
?
?
?
?
?
?
?
26
0
0
4
0
0
?
?
?
?
?
?
?
≥1
?
27
0
0
8
0
0
?
?
?
?
?
?
?
≥1
?
28
0
0
12
0
0
?
?
?
≥1
?
?
?
≥1
?
29
0
0
16
110
2
?
?
?
?
?
?
?
≥1
?
30
0
2
24
52
6590
?
?
?
?
?
≥1
≥1
≥1
?
31
0
0
108
0
0
?
?
?
?
?
?
?
≥1
?
32
0
0
268
0
0
?
≥1
?
?
?
?
?
≥1
?
33
0
0
520
0
12
?
?
?
?
?
?
?
≥1
?
34
0
0
880
4554
288
?
?
?
?
?
?
?
≥1
?
35
0
40
1448
3848
698686
?
?
?
?
?
≥1
≥1
≥1
?
36
0
0
3340
4
4
?
?
?
?
?
?
?
≥1
?
37
0
0
7660
0
0
?
?
?
?
?
?
?
≥1
?
38
0
0
15972
0
2092
?
?
?
?
?
?
?
≥1
?
39
0
0
30324
177862
24874
?
?
?
?
?
?
?
≥1
?
40
0
560
54564
186094
45581314
?
?
?
?
?
≥1
≥1
≥1
?
41
0
0
107376
484
630
?
?
?
?
?
?
?
≥1
?
42
0
0
221900
0
3096
?
?
?
≥1
?
?
?
≥1
?
43
0
0
454744
0
207656
?
?
?
?
?
?
?
≥1
?
44
0
0
895484
6763480
1715898
?
?
?
?
?
?
?
≥1
?
45
0
6840
1694952
7741572
2.50892678×10¹⁰
?
?
?
?
?
≥1
≥1
≥1
?
46
0
0
3252168
32692
55642
?
?
?
?
?
?
?
≥1
?
47
0
0
6394450
0
365322
?
?
?
?
?
?
?
≥1
?
48
0
0
12706224
4
14955546
?
≥1
?
?
?
?
?
≥1
?
49
0
0
25011770
250634260
104721696
?
?
?
?
?
?
?
≥1
?
50
0
77782
48269120
301294322
1.28052545×10¹²
?
?
?
?
?
≥1
≥1
≥1
?
51
0
0
92743792
1674468
3775578
?
?
?
?
?
?
?
≥1
?
52
0
0
179369360
0
26106036
?
?
?
?
?
?
?
≥1
?
53
0
0
349515052
404
894964636
?
?
?
?
?
?
?
≥1
?
54
0
0
681401144
9.07788085×10¹⁰
5.91829738×10¹⁰
?
?
?
?
?
?
?
≥1
?
55
0
846246
1.31884014×10¹⁰
1.12880872×10¹¹
6.25951412×10¹³
?
?
?
?
?
≥1
≥1
≥1
?
56
0
0
2.53952253×10¹⁰
73762592
222558870
?
?
?
≥1
?
?
?
≥1
?
57
0
0
4.88903329×10¹⁰
0
1.51916326×10¹⁰
?
?
?
?
?
?
?
≥1
?
58
0
0
9.43783665×10¹⁰
25584
4.81880193×10¹¹
?
?
?
?
?
?
?
≥1
?
59
0
0
1.82489437×10¹¹
3.22880741×10¹²
3.17155768×10¹²
?
?
?
?
?
?
?
≥1
?
60
0
8933932
3.52196216×10¹¹
4.11966069×10¹²
2.97166252×10¹⁵
?
?
?
?
?
≥1
≥1
≥1
?
61
0
0
6.77807150×10¹¹
2.97917116×10¹⁰
1.20872660×10¹¹
?
?
?
?
?
?
?
≥1
?
62
0
0
1.30248391×10¹²
2
8.00815617×10¹¹
?
?
?
?
?
?
?
≥1
?
63
0
0
2.50349091×10¹²
1337014
2.43706703×10¹³
?
?
?
?
?
?
?
≥1
?
64
0
0
4.81560257×10¹²
1.13233716×10¹⁴
1.63437310×10¹⁴
?
≥1
?
?
?
?
?
≥1
?
65
0
92281396
9.26012542×10¹²
1.47428950×10¹⁴
1.38097635×10¹⁷
?
?
?
?
?
≥1
≥1
≥1
?
66
0
0
1.77852958×10¹³
1.14154204×10¹²
6.23426019×10¹²
?
?
?
?
?
?
?
≥1
?
67
0
0
3.41189648×10¹³
258
3.99446974×10¹³
?
?
?
?
?
?
?
≥1
?
68
0
0
6.54200112×10¹³
63111242
1.18410718×10¹⁵
?
?
?
?
?
?
?
≥1
?
69
0
0
1.25440581×10¹⁴
3.92701167×10¹⁵
8.17290286×10¹⁵
?
?
?
?
?
?
?
≥1
?
70
0
937565572
2.40501767×10¹⁴
5.19638785×10¹⁵
6.31407095×10¹⁸
?
?
?
≥1
?
≥1
≥1
≥1
?
71
0
0
4.60871141×10¹⁴
4.22728575×10¹³
3.10444763×10¹⁴
?
?
?
?
?
?
?
≥1
?
72
0
0
8.82546890×10¹⁴
18664
1.92289620×10¹⁵
?
?
?
?
?
?
?
≥1
?
73
0
0
1.68910851×10¹⁵
2.78890351×10¹⁰
5.59617632×10¹⁶
?
?
?
?
?
?
?
≥1
?
74
0
0
3.23190695×10¹⁵
1.34960391×10¹⁷
3.99084567×10¹⁷
?
?
?
?
?
?
?
≥1
?
75
0
9.40272871×10¹⁰
6.18271613×10¹⁵
1.80958118×10¹⁷
2.85022167×10²⁰
?
?
?
?
?
≥1
≥1
≥1
?
76
0
0
1.18242720×10¹⁶
1.52860412×10¹⁵
1.50696815×10¹⁶
?
?
?
?
?
?
?
≥1
?
77
0
0
2.26042383×10¹⁶
1023406
9.02769098×10¹⁶
?
?
?
?
?
?
?
≥1
?
78
0
0
4.31938344×10¹⁶
1.17445410×10¹²
2.59167325×10¹⁸
?
?
?
?
?
?
?
≥1
?
79
0
0
8.25112048×10¹⁶
4.60331840×10¹⁸
1.91148826×10¹⁹
?
?
?
?
?
?
?
≥1
?
80
0
9.33183909×10¹¹
1.57579179×10¹⁷
6.24022825×10¹⁸
1.27340658×10²²
?
≥1
?
?
?
≥1
≥1
≥1
?
81
0
0
3.00871431×10¹⁷
5.43081164×10¹⁶
7.17398699×10¹⁷
?
?
?
?
?
?
?
≥1
?
82
0
0
5.74301177×10¹⁷
48088984
4.16004319×10¹⁸
?
?
?
?
?
?
?
≥1
?
83
0
0
1.09588133×10¹⁸
4.76619008×10¹³
1.18175731×10²⁰
?
?
?
?
?
?
?
≥1
?
84
0
0
2.09055956×10¹⁸
1.56013089×10²⁰
9.01052784×10²⁰
?
?
?
≥1
?
?
?
≥1
?
85
0
9.18218892×10¹²
3.98708044×10¹⁸
2.13453321×10²⁰
5.64110641×10²³
?
?
?
?
?
≥1
≥1
≥1
?
86
0
0
7.60239973×10¹⁸
1.90322731×10¹⁸
3.36281454×10¹⁹
?
?
?
?
?
?
?
≥1
?
87
0
0
1.44926343×10¹⁹
2.06096565×10¹⁰
1.88953187×10²⁰
?
?
?
?
?
?
?
≥1
?
88
0
0
2.76209976×10¹⁹
1.87880134×10¹⁵
5.32293449×10²¹
?
?
?
?
?
?
?
≥1
?
89
0
0
5.26293193×10¹⁹
5.25862480×10²¹
4.19093966×10²²
?
?
?
?
?
?
?
≥1
?
90
0
8.97013135×10¹³
1.00258172×10²⁰
7.25177355×10²¹
2.48123435×10²⁵
?
?
?
?
?
≥1
≥1
≥1
?
91
0
0
1.90951383×10²⁰
6.59718819×10¹⁹
1.55655154×10²¹
?
?
?
?
?
?
?
≥1
?
92
0
0
3.63613264×10²⁰
8.33597617×10¹¹
8.48440543×10²¹
?
?
?
?
?
?
?
≥1
?
93
0
0
6.92261082×10²⁰
7.23574132×10¹⁶
2.37388712×10²³
?
?
?
?
?
?
?
≥1
?
94
0
0
1.31769072×10²¹
1.76409188×10²³
1.92718213×10²⁴
?
?
?
?
?
?
?
≥1
?
95
0
8.70954718×10¹⁴
2.50768623×10²¹
2.44939964×10²³
1.08477774×10²⁷
?
?
?
?
?
≥1
≥1
≥1
?
96
0
0
4.77148113×10²¹
2.26636340×10²¹
7.12930461×10²²
?
≥1
?
?
?
?
?
≥1
?
97
0
0
9.07730134×10²¹
3.24402566×10¹³
3.77416775×10²³
?
?
?
?
?
?
?
≥1
?
98
0
0
1.72657426×10²²
2.73427043×10¹⁸
1.05003339×10²⁵
?
?
?
≥1
?
?
?
≥1
?
99
0
0
3.28351897×10²²
5.89339558×10²⁴
8.77555871×10²⁵
?
?
?
?
?
?
?
≥1
?
100
0
8.41217476×10¹⁵
6.24339800×10²²
8.23180134×10²⁴
4.71790937×10²⁸
?
?
?
?
?
≥1
≥1
≥1
?
N>0
x
5k
all
all
all
?
?
?
?
?
?
?
?

Formulas

$N(w; h)$ - number of ways to tile $w\times h$ rectangle (including symmetric solutions)

$T(w; h) = \begin{cases} 1, & N(w; h) \geq 1 \\ 0, & \text{else} \end{cases}$ - tileability function, $1$ if tiles rectangle, $0$ otherwise

$A(w; h) = \left(N(w; h)\right)^{\frac{1}{wh}}$ - average number of ways to tile cell in $w\times h$ rectangle (including symmetric solutions)

$G(T; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}T(w; h)x^wy^h$ - bivariate generating function of $T(w; h)$

$G(A; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}A(w; h)x^wy^h$ - bivariate generating function of $A(w; h)$

$G(N(9); x) = \frac{2x^{30} - 8x^{35} + 12x^{40} - 8x^{45} + 2x^{50}}{1 - 24x^5 + 206x^{10} - 824x^{15} + 1990x^{20} - 3339x^{25} + 4100x^{30} - 3548x^{35} + 1572x^{40} + 980x^{45} - 2985x^{50} + 3690x^{55} - 3152x^{60} + 2033x^{65} - 1000x^{70} + 363x^{75} - 91x^{80} + 14x^{85} - x^{90}} \tag{1}$

See Also

I pentomino and B hexominoI pentomino and D hexomino