POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


I pentomino and T1 hexomino

Prime rectangles: ≥ 56.

Smallest rectangle tilings

Smallest rectangle (6x9):

Smallest square (11x11):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1-2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
N>0
1-2
0
3
0
0
4
0
0
0
5
0
0
0
0
6
0
0
0
0
0
7
0
0
0
0
0
0
8
0
0
0
0
0
0
0
9
0
0
0
0
2
0
0
0
10
0
0
0
0
0
0
0
0
0
11
0
0
0
0
0
0
0
62
0
32
12
0
0
0
0
0
0
0
4
0
0
0
13
0
0
0
0
0
0
0
0
0
0
8
0
14
0
0
0
0
22
0
0
0
8
4338
670
72
154
15
0
0
0
0
0
0
0
2
20
40
60
92
≥1000
≥100
16
0
0
0
0
0
0
0
1220
70
2564
188
562
≥1000
≥100
≥1
17
0
0
0
0
0
0
8
234
120
32
16
5596
≥1000
≥100
≥1
≥1
18
0
0
0
0
4
0
0
16
206
5190
954
592
≥1000
≥100
≥1
≥1
≥1
19
0
0
0
0
176
8
0
4
986
203386
72852
24870
≥1000
≥100
≥1
≥1
≥1
≥1
20
0
0
0
0
2
4
6
148
2228
15486
34056
≥1000
≥1000
≥100
≥1
≥1
≥1
≥1
≥1
21
0
0
0
0
0
0
2
19478
6080
134872
32918
≥1000
≥1000
≥100
≥1
≥1
≥1
≥1
≥1
all
22
0
0
0
0
0
0
264
7614
11044
9368
6962
≥1000
≥1000
≥100
≥1
≥1
≥1
≥1
≥1
all
23
0
0
0
0
76
0
2
932
19708
650146
≥1000
≥1000
≥1000
≥100
≥1
≥1
≥1
≥1
≥1
all
24
0
0
0
0
1264
184
2
212
62758
8349238
≥1
≥1
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
all
25
0
?
?
?
36
80
154
≥1
134354
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
26
0
?
?
?
0
0
108
≥1
316846
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
27
0
?
?
?
8
0
5224
≥1
595090
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
28
0
?
?
?
892
0
98
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
29
0
?
?
?
8580
2632
162
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
30
0
?
?
?
384
980
2694
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
31
0
?
?
?
2
0
3162
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
32
0
?
?
?
216
8
81002
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
33
0
?
?
?
8452
0
2686
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
34
0
?
?
?
56204
30400
5368
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
35
0
?
?
?
3244
9744
41578
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
36
0
?
?
?
66
0
67068
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
37
0
?
?
?
3376
264
1086620
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
38
0
?
?
?
71080
96
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
39
0
?
?
?
359336
310960
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
40
0
?
?
?
24242
87036
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
41
0
?
?
?
≥1
0
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
42
0
?
?
?
≥1
5048
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
43
0
?
?
?
≥1
4000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
44
0
?
?
?
≥1
2942120
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
45
0
?
?
?
≥1
730888
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
46
0
?
?
?
≥1
24
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
47
0
?
?
?
≥1
73776
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
48
0
?
?
?
≥1
93610
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
49
0
?
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
50
0
?
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
51
0
?
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
52
0
?
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
53
0
?
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
54
0
?
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
55
0
?
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
56
0
?
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
57
0
?
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
58
0
?
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
59
0
?
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
60
0
?
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
all
N>0
x
?
?
?
all
all
all
all
all
all
all
all
all
all
all
all
all
all
all

Smallest common multiples

Smallest known common multiple (area 120):

Common multiples' solutions count (excluding symmetric)

area
30
60
90
120
solutions
?
?
?
≥1

Attributions

  1. Common multiple have been found by Michael Reid

See Also

I pentomino and S hexominoI pentomino and T2 hexomino