Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.
Then click "Show" button.
You may also see list of all polyomino sets for which data is available here.
Prime rectangles: ≥ 8.
Smallest rectangle (3x5):
Smallest square (15x15):
Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).
Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).
Purple number - prime rectangle (unknown if weakly or strongly prime).
Red number - composite rectangle (which can be divided into two rectangles tileable by this set).
Gray number - it is unknown whether rectangle is prime or composite.
Question mark (?) - solution count is unknown.
Click on underlined numbers to view picture with one solution.
$N(w; h)$ - number of ways to tile $w\times h$ rectangle (including symmetric solutions)
$T(w; h) = \begin{cases} 1, & N(w; h) \geq 1 \\ 0, & \text{else} \end{cases}$ - tileability function, $1$ if tiles rectangle, $0$ otherwise
$A(w; h) = \left(N(w; h)\right)^{\frac{1}{wh}}$ - average number of ways to tile cell in $w\times h$ rectangle (including symmetric solutions)
$G(T; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}T(w; h)x^wy^h$ - bivariate generating function of $T(w; h)$
$G(A; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}A(w; h)x^wy^h$ - bivariate generating function of $A(w; h)$
$G(N(3); x) = \frac{x^5}{1 - x^5} \tag{1}$
$G(N(5); x) = \frac{x^3}{1 - x^3} \tag{2}$
$G(N(6); x) = \frac{x^5}{1 - x^5} \tag{3}$
$G(N(8); x) = \frac{2x^{15}}{1 - 2x^{15}} \tag{4}$
$G(N(9); x) = \frac{x^5}{1 - x^5} \tag{5}$
$G(N(10); x) = \frac{x^3}{1 - x^3} \tag{6}$
$G(N(11); x) = \frac{3x^{15}}{1 - 3x^{15}} \tag{7}$
$G(N(12); x) = \frac{x^5}{1 - x^5} \tag{8}$
$G(N(13); x) = \frac{3x^{15}}{1 - 3x^{15}} \tag{9}$
$G(N(14); x) = \frac{4x^{15}}{1 - 4x^{15}} \tag{10}$
$G(N(15); x) = \frac{x^3 + x^5}{1 - x^3 - x^5} \tag{11}$
$G(N(16); x) = \frac{6x^{15}}{1 - 6x^{15}} \tag{12}$
$G(N(18); x) = \frac{x^5 - 4x^{10} + 10x^{15} - 12x^{20} + 13x^{25} - 8x^{30} + 2x^{35}}{1 - 5x^5 + 10x^{10} - 14x^{15} + 13x^{20} - 13x^{25} + 8x^{30} - 2x^{35}} \tag{13}$