POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


U pentomino and O hexomino

Prime rectangles: ≥ 46.

Smallest rectangle tilings

Smallest rectangle (7x10):

Smallest square (10x10):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1-4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
N>0
1-4
0
5
0
0
6
0
0
0
7
0
0
0
0
8
0
0
0
0
0
9
0
0
0
0
0
0
10
0
0
0
2
0
0
16
11
0
0
0
0
0
0
8
0
12
0
0
0
0
0
0
0
0
0
13
0
0
0
0
2
0
76
0
24
0
14
0
0
0
2
0
0
52
68
20
654
848
15
0
0
0
0
0
0
20
0
144
0
884
0
16
0
0
0
12
6
4
366
334
244
≥1000
≥1000
≥1000
≥1000
17
0
0
0
0
0
0
312
0
526
0
≥1000
0
≥1000
?
18
0
0
0
2
0
16
172
170
≥1000
≥1000
≥1000
≥1000
≥1000
≥1
≥1
19
0
0
0
0
24
0
≥1000
0
≥1000
0
≥1000
0
≥1000
?
≥1
?
20
0
0
0
16
4
40
≥1000
≥1000
≥1000
≥1000
≥1000
≥1000
≥1000
≥1
≥1
≥1
≥1
21
0
0
0
0
0
0
≥1
?
?
?
≥1
?
≥1
?
≥1
?
≥1
?
22
0
0
0
56
84
130
≥1
?
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
23
0
0
0
0
16
0
≥1
?
?
?
≥1
?
≥1
?
≥1
?
≥1
?
24
0
0
0
20
0
400
≥1
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
25
0
0
0
0
292
0
≥1
?
?
?
≥1
?
≥1
?
≥1
?
≥1
?
26
0
0
0
92
68
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
27
0
0
0
0
8
0
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
28
0
0
0
240
984
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
29
0
0
0
0
252
0
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
30
0
0
0
136
40
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
31
0
?
?
0
≥1000
0
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
32
0
?
?
≥1
912
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
33
0
?
?
0
184
0
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
34
0
?
?
≥1
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
35
0
?
?
0
≥1000
0
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
36
0
?
?
≥1
728
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
37
0
?
?
0
≥1000
0
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
38
0
?
?
≥1
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
39
0
?
?
0
≥1000
0
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
40
0
?
?
≥1
≥1000
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
N>0
x
?
?
2k
all
2k
all
?
?
?
?
?
?
?
?
?
?

See Also

U pentomino and N3 hexominoU pentomino and P hexomino