POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


U pentomino and X2 hexomino

Prime rectangles: ≥ 58.

Smallest rectangle tilings

Smallest rectangle (13x31):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1-12
13
14-16
17
18
19
20
N>0
1-12
0
13
0
0
14-16
0
0
0
17
0
0
0
0
18
0
0
0
0
0
19
0
0
0
0
0
0
20
0
0
0
0
0
0
0
21
0
0
0
0
0
0
0
?
22
0
0
0
0
0
0
0
?
23
0
0
0
0
0
?
?
?
24
0
0
0
0
0
?
?
?
25
0
0
0
0
0
?
?
?
26
0
0
0
0
0
?
?
?
27
0
0
0
0
0
?
?
?
28
0
0
0
0
0
?
?
?
29
0
0
0
0
≥1
?
?
?
30
0
0
0
2
0
?
?
?
31
0
2
0
0
0
?
?
?
32
0
0
0
0
0
?
?
?
33
0
0
0
0
0
?
?
?
34
0
0
0
0
0
?
?
?
35
0
0
0
0
0
?
?
?
36
0
0
0
0
0
?
?
?
37
0
0
0
0
0
?
?
?
38
0
0
0
0
≥1
?
?
?
39
0
0
0
0
0
?
?
?
40
0
0
0
0
0
?
?
?
41
0
0
0
0
0
?
?
?
42
0
0
0
0
0
?
?
?
43
0
0
0
0
0
?
?
?
44
0
0
0
0
0
?
?
?
45
0
0
0
0
0
?
?
?
46
0
0
0
0
≥1
?
?
?
47
0
0
0
0
≥1
?
?
?
48
0
0
0
0
0
?
?
?
49
0
0
0
0
0
?
?
?
50
0
0
0
0
0
?
?
?
51
0
0
0
0
0
?
?
?
52
0
0
0
4
≥1
?
?
?
53
0
0
0
0
0
?
?
?
54
0
0
0
0
0
?
?
?
55
0
0
0
0
≥1
?
?
?
56
0
0
0
0
0
?
?
?
57
0
0
0
0
0
?
?
?
58
0
0
0
0
≥1
?
?
?
59
0
0
0
0
≥1
?
?
?
60
0
0
0
4
≥1
?
?
?
61
0
0
0
0
≥1
?
?
?
62
0
4
0
0
0
?
?
?
63
0
0
0
0
≥1
?
?
?
64
0
0
0
0
≥1
?
?
?
65
0
0
0
0
≥1
?
?
?
66
0
0
0
2
≥1
?
?
?
67
0
0
0
0
≥1
?
?
?
68
0
0
0
0
≥1
?
?
?
69
0
0
0
0
≥1
?
?
?
70
0
0
0
4
≥1
?
?
?
71
0
0
0
0
≥1
?
?
?
72
0
0
0
0
≥1
?
?
?
73
0
0
0
4
≥1
?
?
?
74
0
0
0
0
≥1
?
?
?
75
0
0
0
0
≥1
?
?
?
76
0
0
0
4
≥1
?
?
?
77
0
0
0
8
≥1
?
?
?
78
0
0
0
0
≥1
?
?
?
79
0
0
0
4
≥1
?
?
?
80
0
0
0
4
≥1
?
?
?
81
0
0
0
8
≥1
?
?
?
82
0
0
0
16
≥1
?
?
?
83
0
0
0
8
≥1
?
?
?
84
0
0
0
4
≥1
?
?
?
85
0
0
0
0
≥1
?
?
?
86
0
0
0
6
≥1
?
?
?
87
0
0
0
4
≥1
?
?
?
88
0
0
0
6
≥1
?
?
?
89
0
0
0
12
≥1
?
?
?
90
0
0
0
28
≥1
?
?
?
91
0
0
0
24
≥1
?
?
?
92
0
0
0
10
≥1
?
?
?
93
0
8
0
16
≥1
?
?
?
94
0
0
0
44
≥1
?
?
?
95
0
0
0
22
≥1
?
?
?
96
0
0
0
38
≥1
?
?
?
97
0
0
0
58
≥1
?
?
?
98
0
0
0
68
≥1
?
?
?
99
0
0
0
56
≥1
?
?
?
100
0
0
0
50
≥1
?
?
?
101
0
0
0
48
≥1
?
?
?
102
0
0
0
66
≥1
?
?
?
103
0
0
0
120
≥1
?
?
?
104
0
0
0
78
≥1
?
?
?
105
0
0
0
102
≥1
?
?
?
106
0
0
0
104
≥1
?
?
?
107
0
0
0
134
≥1
?
?
?
108
0
0
0
126
≥1
?
?
?
109
0
0
0
160
≥1
?
?
?
110
0
0
0
218
≥1
?
?
?
111
0
0
0
258
≥1
?
?
?
112
0
0
0
320
≥1
?
?
?
113
0
0
0
276
≥1
?
?
?
114
0
0
0
430
≥1
?
?
?
115
0
0
0
390
≥1
?
?
?
116
0
0
0
524
≥1
?
?
?
117
0
0
0
548
≥1
?
?
?
118
0
0
0
580
≥1
?
?
?
119
0
0
0
722
≥1
?
?
?
120
0
0
0
996
≥1
?
?
?
N>0
x
31k
x
all
?
?
?

Formulas

$N(w; h)$ - number of ways to tile $w\times h$ rectangle (including symmetric solutions)

$T(w; h) = \begin{cases} 1, & N(w; h) \geq 1 \\ 0, & \text{else} \end{cases}$ - tileability function, $1$ if tiles rectangle, $0$ otherwise

$A(w; h) = \left(N(w; h)\right)^{\frac{1}{wh}}$ - average number of ways to tile cell in $w\times h$ rectangle (including symmetric solutions)

$G(T; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}T(w; h)x^wy^h$ - bivariate generating function of $T(w; h)$

$G(A; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}A(w; h)x^wy^h$ - bivariate generating function of $A(w; h)$

$G(N(13); x) = \frac{2x^{31}}{1 - 2x^{31}} \tag{1}$

See Also

U pentomino and V2 hexominoU pentomino and Y1 hexomino