POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


Y pentomino and C hexomino

Prime rectangles: ≥ 65.

Smallest rectangle tilings

Smallest rectangle (6x12):

Smallest known square (12x12):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1-4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
N>0
1-4
0
5
0
0
6
0
0
0
7
0
0
0
0
8
0
0
0
0
0
9
0
0
0
0
0
0
10
0
0
0
0
0
0
0
11
0
0
0
0
0
0
0
?
12
0
0
32
0
0
128
0
?
≥1
13
0
0
0
0
0
0
16
?
?
?
14
0
0
0
0
0
0
0
?
?
?
?
15
0
0
0
0
0
0
0
?
≥1
?
?
?
16
0
0
18
0
66
14
0
?
≥1
?
≥1
≥1
≥1
17
0
0
64
0
4
0
128
?
≥1
?
≥1
?
≥1
?
18
0
0
0
0
160
0
708
?
≥1
?
?
?
≥1
≥1
≥1
19
0
0
0
0
32
0
224
?
?
?
?
?
≥1
?
≥1
?
20
0
0
16
0
0
72
464
?
≥1
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
21
0
0
32
0
128
352
792
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
22
0
0
96
64
194
2552
6248
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
23
0
0
0
0
1192
32
≥1500
?
≥1
?
?
?
≥1
≥1
≥1
≥1
≥1
?
24
0
0
1040
0
104
20968
≥100
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
25
0
0
32
0
≥100
≥100
≥100
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
26
0
0
48
16
≥100
≥100
≥100
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
27
0
0
≥100
0
≥100
≥100
≥100
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
28
0
0
≥100
0
≥100
≥100
≥100
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
29
0
0
≥100
0
≥100
≥100
≥100
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
30
0
0
48
0
≥100
≥100
≥100
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
31
0
0
64
0
≥100
≥100
≥100
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
32
0
0
≥100
≥100
≥100
≥100
≥100
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
33
0
0
≥100
0
≥100
≥100
≥100
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
34
0
0
≥100
0
≥100
≥100
≥100
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
35
0
0
64
12
≥100
≥100
≥100
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
36
0
0
≥100
0
≥100
≥100
≥100
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
37
0
0
≥100
0
≥100
≥100
≥100
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
38
0
0
≥100
≥100
≥100
≥100
≥100
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
39
0
0
≥100
0
≥100
≥100
≥100
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
40
0
0
≥100
≥100
≥100
≥100
≥100
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
41
0
?
≥1
≥100
≥1
≥1
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
42
0
?
≥1
≥100
≥1
≥1
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
43
0
?
≥1
16
≥1
≥1
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
44
0
?
≥1
≥100
≥1
≥1
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
45
0
?
≥1
16
≥1
≥1
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
46
0
?
≥1
≥100
≥1
≥1
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
47
0
?
≥1
0
≥1
≥1
≥1
?
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
48
0
?
≥1
≥100
≥1
≥1
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
49
0
?
≥1
≥100
≥1
≥1
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
50
0
?
≥1
≥100
≥1
≥1
≥1
?
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
N>0
x
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

See Also

Y pentomino and B hexominoY pentomino and D hexomino