POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


A hexomino

Area: 6.

Size: 3x3.

Holes: 0.

Order: 2.

Square order: 24.

Prime rectangles: ≥ 1.

Smallest rectangle tilings

Smallest rectangle (3x4):

Smallest square (12x12):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1-2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
N>0
1-2
0
3
0
0
4
0
2
0
5
0
0
0
0
6
0
0
4
0
0
7
0
0
0
0
0
0
8
0
4
0
0
16
0
0
9
0
0
8
0
0
0
64
0
10
0
0
0
0
0
0
0
0
0
11
0
0
0
0
0
0
0
0
0
0
12
0
8
16
0
64
256
256
512
3072
6144
8192
13
0
0
0
0
0
0
0
0
0
0
32768
0
14
0
0
0
0
0
0
0
0
0
0
98304
0
0
15
0
0
32
0
0
0
1024
0
0
0
163840
0
0
0
16
0
16
0
0
256
0
0
4096
0
0
393216
0
0
17825792
0
17
0
0
0
0
0
0
0
0
0
0
1310720
0
0
0
0
0
18
0
0
64
0
0
0
4096
0
0
0
2883584
0
0
0
612368384
0
0
19
0
0
0
0
0
0
0
0
0
0
5767168
0
0
0
0
0
0
0
20
0
32
0
0
1024
0
0
32768
0
0
16777216
0
0
1.45961779×10¹⁰
0
0
9.45563893×10¹¹
0
0
21
0
0
128
0
0
0
16384
0
0
0
44040192
0
0
0
1.79851755×10¹¹
0
0
0
5.33434938×10¹³
?
22
0
0
0
0
0
0
0
0
0
0
92274688
0
0
0
0
0
0
0
0
?
23
0
0
0
0
0
0
0
0
0
0
226492416
0
0
0
0
0
0
0
0
?
24
0
64
256
0
4096
65536
65536
262144
9437184
37748736
620756992
1.07374182×10¹⁰
9.66367641×10¹⁰
1.17037858×10¹²
5.84115552×10¹²
1.73516678×10¹³
1.91899138×10¹⁴
1.63483635×10¹⁵
5.29002531×10¹⁵
?
25
0
0
0
0
0
0
0
0
0
0
1.44284057×10¹⁰
0
0
0
0
0
0
0
0
?
26
0
0
0
0
0
0
0
0
0
0
3.28833433×10¹⁰
0
0
0
0
0
0
0
0
?
27
0
0
512
0
0
0
262144
0
0
0
8.58993459×10¹⁰
0
0
0
2.10281598×10¹⁴
0
0
0
5.14043676×10¹⁷
?
28
0
128
0
0
16384
0
0
2097152
0
0
2.14748364×10¹¹
0
0
9.89560464×10¹³
0
0
4.11932031×10¹⁶
0
0
?
29
0
0
0
0
0
0
0
0
0
0
4.93921239×10¹¹
0
0
0
0
0
0
0
0
?
30
0
0
1024
0
0
0
1048576
0
0
0
1.21332826×10¹²
0
0
0
7.70207895×10¹⁵
0
0
0
4.27117166×10¹⁹
?
31
0
0
0
0
0
0
0
0
0
0
3.09237645×10¹²
0
0
0
0
0
0
0
0
?
32
0
256
0
0
65536
0
0
16777216
0
0
7.38734374×10¹²
0
0
8.49922488×10¹⁵
0
0
7.99740777×10¹⁸
0
0
?
33
0
0
2048
0
0
0
4194304
0
0
0
1.76093659×10¹³
0
0
0
2.69864133×10¹⁷
0
0
0
3.10957791×10²¹
?
34
0
0
0
0
0
0
0
0
0
0
4.41522638×10¹³
0
0
0
0
0
0
0
0
?
35
0
0
0
0
0
0
0
0
0
0
1.08576773×10¹⁴
0
0
0
0
0
0
0
0
?
36
0
512
4096
0
262144
16777216
16777216
134217728
2.89910292×10¹¹
2.31928233×10¹²
2.59072427×10¹⁴
3.51843720×10¹⁴
9.49978046×10¹⁵
7.24270299×10¹⁷
9.21337967×10¹⁸
2.29796170×10¹⁹
1.55214309×10²¹
3.51729779×10²²
2.45446945×10²³
?
37
0
0
0
0
0
0
0
0
0
0
6.34967965×10¹⁴
0
0
0
0
0
0
0
0
?
38
0
0
0
0
0
0
0
0
0
0
1.57505040×10¹⁵
0
0
0
0
0
0
0
0
?
39
0
0
8192
0
0
0
67108864
0
0
0
3.80980779×10¹⁵
0
0
0
3.15465894×10²⁰
0
0
0
2.10055712×10²⁵
?
40
0
1024
0
0
1048576
0
0
1.07374182×10¹⁰
0
0
9.22490255×10¹⁵
0
0
6.14206546×10¹⁹
0
0
3.10922078×10²³
0
0
?
41
0
0
0
0
0
0
0
0
0
0
2.27598906×10¹⁶
0
0
0
0
0
0
0
0
?
42
0
0
16384
0
0
0
268435456
0
0
0
5.56792688×10¹⁶
0
0
0
1.09606806×10²²
0
0
0
1.79069434×10²⁷
?
43
0
0
0
0
0
0
0
0
0
0
1.34756145×10¹⁷
0
0
0
0
0
0
0
0
?
44
0
2048
0
0
4194304
0
0
8.58993459×10¹⁰
0
0
3.29677566×10¹⁷
0
0
5.21147541×10²¹
0
0
6.19253710×10²⁵
0
0
?
45
0
0
32768
0
0
0
1.07374182×10¹⁰
0
0
0
8.09592401×10¹⁷
0
0
0
3.82988994×10²³
0
0
0
1.44329852×10²⁹
?
46
0
0
0
0
0
0
0
0
0
0
1.96891746×10¹⁸
0
0
0
0
0
0
0
0
?
47
0
0
0
0
0
0
0
0
0
0
4.79351885×10¹⁸
0
0
0
0
0
0
0
0
?
48
0
4096
65536
0
16777216
4.29496729×10¹⁰
4.29496729×10¹⁰
6.87194767×10¹¹
8.90604418×10¹⁴
1.42496706×10¹⁶
1.17515802×10¹⁹
1.15292150×10¹⁹
9.33866418×10²⁰
4.42675740×10²³
1.33387945×10²⁵
3.04334383×10²⁵
1.22241223×10²⁸
7.69052292×10²⁹
1.14986004×10³¹
?
49
0
0
0
0
0
0
0
0
0
0
2.87048181×10¹⁹
0
0
0
0
0
0
0
0
?
50
0
0
0
0
0
0
0
0
0
0
6.98508302×10¹⁹
0
0
0
0
0
0
0
0
?
51
0
0
131072
0
0
0
1.71798691×10¹¹
0
0
0
1.70708943×10²⁰
0
0
0
4.62541039×10²⁶
0
0
0
9.37499049×10³²
?
52
0
8192
0
0
67108864
0
0
5.49755813×10¹²
0
0
4.17663829×10²⁰
0
0
3.76068237×10²⁵
0
0
2.42123264×10³⁰
0
0
?
53
0
0
0
0
0
0
0
0
0
0
1.01808373×10²¹
0
0
0
0
0
0
0
0
?
54
0
0
262144
0
0
0
6.87194767×10¹¹
0
0
0
2.48328483×10²¹
0
0
0
1.60267968×10²⁸
0
0
0
7.78069979×10³⁴
?
55
0
0
0
0
0
0
0
0
0
0
6.07265373×10²¹
0
0
0
0
0
0
0
0
?
56
0
16384
0
0
268435456
0
0
4.39804651×10¹³
0
0
1.48272911×10²²
0
0
3.19420278×10²⁷
0
0
4.80631689×10³²
0
0
?
57
0
0
524288
0
0
0
2.74877906×10¹²
0
0
0
3.61556183×10²²
0
0
0
5.56154800×10²⁹
0
0
0
6.40051087×10³⁶
?
58
0
0
0
0
0
0
0
0
0
0
8.83137872×10²²
0
0
0
0
0
0
0
0
?
59
0
0
0
0
0
0
0
0
0
0
2.15780788×10²³
0
0
0
0
0
0
0
0
?
60
0
32768
1048576
0
1.07374182×10¹⁰
1.09951162×10¹³
1.09951162×10¹³
3.51843720×10¹⁴
2.73593677×10¹⁸
8.75499767×10¹⁹
5.26481605×10²³
3.77789318×10²³
9.18028044×10²⁵
2.71286779×10²⁹
1.93217370×10³¹
4.03050548×10³¹
9.52691758×10³⁴
1.68170053×10³⁷
5.20336395×10³⁸
?
N>0
x
4k
3k
x
4k
12k
3k
4k
12k
12k
all
12k
12k
4k
3k
12k
4k
12k
3k

Reptile tilings' solutions count (including symmetric)

polyomino \ n²
10²
11²
12²
13²
A hexomino
1
0
0
0
0
0
0
?
?
?
≥576460752303423488
≥131744580139097362171691008
≥9671406556917033397649408

Formulas

$N(w; h)$ - number of ways to tile $w\times h$ rectangle (including symmetric solutions)

$T(w; h) = \begin{cases} 1, & N(w; h) \geq 1 \\ 0, & \text{else} \end{cases}$ - tileability function, $1$ if tiles rectangle, $0$ otherwise

$A(w; h) = \left(N(w; h)\right)^{\frac{1}{wh}}$ - average number of ways to tile cell in $w\times h$ rectangle (including symmetric solutions)

$G(T; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}T(w; h)x^wy^h$ - bivariate generating function of $T(w; h)$

$G(A; x; y) = \sum_{w=1}^{\infty}\sum _{h=1}^{\infty}A(w; h)x^wy^h$ - bivariate generating function of $A(w; h)$

$N(1; n) = T(1; n) = 0, \qquad n \geq 1 \tag{1}$

$N(2; n) = T(2; n) = 0, \qquad n \geq 1 \tag{2}$

$N(3; n) = 2 \times N(3; n - 4), \qquad n \geq 5 \tag{3}$

$N(4; n) = 2 \times N(4; n - 3), \qquad n \geq 4 \tag{4}$

$N(5; n) = T(5; n) = 0, \qquad n \geq 1 \tag{5}$

$N(6; n) = 4 \times N(6; n - 4), \qquad n \geq 5 \tag{6}$

$N(7; n) = 256 \times N(7; n - 12), \qquad n \geq 13 \tag{7}$

$N(8; n) = 4 \times N(8; n - 3), \qquad n \geq 4 \tag{8}$

$N(9; n) = 8 \times N(9; n - 4), \qquad n \geq 5 \tag{9}$

$N(10; n) = 3072 \times N(10; n - 12), \qquad n \geq 13 \tag{10}$

$N(11; n) = 6144 \times N(11; n - 12), \qquad n \geq 13 \tag{11}$

$N(12; n) = 8 \times N(12; n - 3) + 16 \times N(12; n - 4), \qquad n \geq 5 \tag{12}$

$N(13; n) = 32768 \times N(13; n - 12), \qquad n \geq 13 \tag{13}$

$N(14; n) = 98304 \times N(14; n - 12), \qquad n \geq 13 \tag{14}$

$N(15; n) = 128 \times N(15; n - 4) - 6144 \times N(15; n - 8) + 262144 \times N(15; n - 12) - 5242880 \times N(15; n - 16) + 83886080 \times N(15; n - 20) - 536870912 \times N(15; n - 24), \qquad n \geq 25 \tag{15}$

$N(16; n) = 48 \times N(16; n - 3) - 768 \times N(16; n - 6) + 4096 \times N(16; n - 9) + 327680 \times N(16; n - 12) - 4194304 \times N(16; n - 15) + 25165824 \times N(16; n - 18), \qquad n \geq 19 \tag{16}$

$G(N(3); x) = \frac{1}{1 - 2x^4} \tag{17}$

$G(N(4); x) = \frac{1}{1 - 2x^3} \tag{18}$

$G(N(6); x) = \frac{1}{1 - 4x^4} \tag{19}$

$G(N(7); x) = \frac{1}{1 - 256x^{12}} \tag{20}$

$G(N(8); x) = \frac{1}{1 - 4x^3} \tag{21}$

$G(N(9); x) = \frac{1}{1 - 8x^4} \tag{22}$

$G(N(10); x) = \frac{1}{1 - 3072x^{12}} \tag{23}$

$G(N(11); x) = \frac{1}{1 - 6144x^{12}} \tag{24}$

$G(N(12); x) = \frac{1}{1 - 8x^3 - 16x^4} \tag{25}$

$G(N(13); x) = \frac{1}{1 - 32768x^{12}} \tag{26}$

$G(N(14); x) = \frac{1}{1 - 98304x^{12}} \tag{27}$

$G(N(15); x) = \frac{1 - 96x^4 + 3072x^8 - 32768x^{12}}{1 - 128x^4 + 6144x^8 - 262144x^{12} + 5242880x^{16} - 83886080x^{20} + 536870912x^{24}} \tag{28}$

$G(N(16); x) = \frac{1 - 32x^3 + 256x^6}{1 - 48x^3 + 768x^6 - 4096x^9 - 327680x^{12} + 4194304x^{15} - 25165824x^{18}} \tag{29}$

$G(N(17); x) = \frac{1 - 65536x^{12}}{1 - 1376256x^{12} + 68719476736x^{24}} \tag{30}$

$G(N(18); x) = \frac{1 - 192x^4 + 12288x^8 - 262144x^{12}}{1 - 256x^4 + 24576x^8 - 3670016x^{12} + 260046848x^{16} - 10267656192x^{20} + 141733920768x^{24}} \tag{31}$

$G(N(19); x) = \frac{1 - 14680064x^{12} + 13606456393728x^{24} + 7266557998762295296x^{36} - 36397492092765200808148992x^{48} + 48372700463207372582351232040960x^{60} - 25541004588578434450176025192877260800x^{72} + 5911894040165929663836097612456999671300096x^{84} + 558798723226961312422803433363423879486385422336x^{96} - 45437589222420710052913953165631870656795481565298688x^{108} - 1082161848769781680155464365438617400285212588475452227584x^{120}}{1 - 20447232x^{12} - 31954556682240x^{24} + 17043872789783642112x^{36} + 103129548010101336675713024x^{48} - 140569290715267987926936864161792x^{60} + 131406197612185736373182868273561075712x^{72} - 56806242864046038263184132070577665722023936x^{84} + 8567148247845973072418431577152182913246712299520x^{96} - 466677208780852039795671841064694715794885161592553472x^{108} + 162965336363250360902692504375440886350206777825016414208x^{120} + 283682235683905648762674050613540919780366768793308948747780096x^{132}} \tag{1}$

$G(N(20); x) = \frac{1 - 128x^3 + 6144x^6 - 147456x^9 + 2097152x^{12} - 37748736x^{15} + 1744830464x^{18} - 47244640256x^{21} + 326417514496x^{24} + 5497558138880x^{27} - 92358976733184x^{30} + 281474976710656x^{33} - 4503599627370496x^{36}}{1 - 160x^3 + 10240x^6 - 344064x^9 - 8912896x^{12} + 1488977920x^{15} - 58317602816x^{18} + 1206885810176x^{21} - 19396072308736x^{24} + 475538779013120x^{27} - 15256823347019776x^{30} + 322148110845345792x^{33} - 1787929052066086912x^{36} - 41072828601618923520x^{39} + 637565592047586377728x^{42} - 1992248359960631574528x^{45} + 28629346802397224108032x^{48}} \tag{1}$

See Also

Z pentominoB hexomino