POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


P3 9-omino

Area: 9.

Size: 2x7.

Is rectangular: no.

Is convex: yes.

Holes: 0.

Order: 2.

Square order: ≤ 36.

Odd order: ≤ 95.

Prime rectangles: ≥ 7.

Smallest rectangle tilings

Smallest rectangle (2x9):

Smallest known square (18x18):

Smallest known odd rectangles (15x57, 19x45):

45x19

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
N>0
1
0
2
0
0
3
0
0
0
4
0
0
0
0
5
0
0
0
0
0
6
0
0
0
0
0
0
7
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
9
0
2
0
4
0
8
0
16
0
10
0
0
0
0
0
0
0
0
32
0
11
0
0
0
0
0
0
0
0
0
0
0
12
0
0
0
0
0
0
0
0
64
0
0
0
13
0
0
0
0
0
0
0
0
0
0
0
0
0
14
0
0
0
0
0
0
0
0
128
0
0
0
0
0
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
16
0
0
0
0
0
0
0
0
256
0
0
0
0
0
0
?
17
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
18
0
4
0
16
0
64
0
256
512
1024
4096
4096
24576
16384
131072
≥1
≥1
≥1
19
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
20
0
0
0
0
0
0
0
0
1024
0
0
0
0
0
0
?
?
≥1
?
?
21
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
22
0
0
0
0
0
0
0
0
2048
0
0
0
0
0
0
?
?
≥1
?
?
?
?
23
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
24
0
0
0
0
0
0
0
0
4096
0
0
0
0
0
0
?
?
≥1
?
?
?
?
25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
26
0
0
0
0
0
0
0
0
8192
0
0
0
0
0
0
?
?
≥1
?
?
?
?
27
0
8
0
64
0
512
0
4096
0
32768
0
262144
0
2097152
0
≥1
?
≥1
?
≥1
?
?
28
0
0
0
0
0
0
0
0
16384
0
0
0
0
0
0
?
?
≥1
?
?
?
?
29
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
30
0
0
0
0
0
0
0
0
32768
0
0
0
0
0
0
?
?
≥1
?
?
?
?
31
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
32
0
0
0
0
0
0
0
0
65536
0
0
0
0
0
0
?
?
≥1
?
?
?
?
33
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
34
0
0
0
0
0
0
0
0
131072
0
0
0
0
0
0
?
?
≥1
?
?
?
?
35
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
36
0
16
0
256
0
4096
0
65536
262144
1048576
16908288
16777216
608174080
268435456
1.72805324×10¹¹
≥1
≥1
≥1
≥1
≥1
≥1
?
37
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
38
0
0
0
0
0
0
0
0
524288
0
0
0
0
0
0
?
?
≥1
?
?
?
?
39
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
40
0
0
0
0
0
0
0
0
1048576
0
0
0
0
0
0
?
?
≥1
?
?
?
?
41
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
42
0
0
0
0
0
0
0
0
2097152
0
0
0
0
0
0
?
?
≥1
?
?
?
?
43
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
44
0
0
0
0
0
0
0
0
4194304
0
0
0
0
0
0
?
?
≥1
?
?
?
?
45
0
32
0
1024
0
32768
0
1048576
0
33554432
0
1.07374182×10¹⁰
0
3.43597383×10¹¹
0
≥1
?
≥1
≥1
≥1
≥1
?
46
0
0
0
0
0
0
0
0
8388608
0
0
0
0
0
0
?
?
≥1
?
?
?
?
47
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
48
0
0
0
0
0
0
0
0
16777216
0
0
0
0
0
0
?
?
≥1
?
?
?
?
49
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
50
0
0
0
0
0
0
0
0
33554432
0
0
0
0
0
0
?
?
≥1
?
?
?
?
51
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
52
0
0
0
0
0
0
0
0
67108864
0
0
0
0
0
0
?
?
≥1
?
?
?
?
53
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
54
0
64
0
4096
0
262144
0
16777216
134217728
1.07374182×10¹⁰
6.97963642×10¹¹
6.87194767×10¹¹
1.56519849×10¹⁴
4.39804651×10¹³
2.35638441×10¹⁶
≥1
≥1
≥1
≥1
≥1
≥1
?
55
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
56
0
0
0
0
0
0
0
0
268435456
0
0
0
0
0
0
?
?
≥1
?
?
?
?
57
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.31941395×10¹⁴
?
?
≥1
?
?
?
?
58
0
0
0
0
0
0
0
0
536870912
0
0
0
0
0
0
?
?
≥1
?
?
?
?
59
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
60
0
0
0
0
0
0
0
0
1.07374182×10¹⁰
0
0
0
0
0
0
?
?
≥1
?
?
≥1
?
61
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
62
0
0
0
0
0
0
0
0
2.14748364×10¹⁰
0
0
0
0
0
0
?
?
≥1
?
?
?
?
63
0
128
0
16384
0
2097152
0
268435456
0
3.43597383×10¹¹
0
4.39804651×10¹³
0
5.62949953×10¹⁵
0
≥1
?
≥1
≥1
≥1
≥1
?
64
0
0
0
0
0
0
0
0
4.29496729×10¹⁰
0
0
0
0
0
0
?
?
≥1
?
?
?
?
65
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
66
0
0
0
0
0
0
0
0
8.58993459×10¹⁰
0
0
0
0
0
9.53688898×10¹⁵
?
?
≥1
?
?
?
?
67
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
68
0
0
0
0
0
0
0
0
1.71798691×10¹¹
0
0
0
0
0
0
?
?
≥1
?
?
?
?
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1.75921860×10¹⁴
?
?
≥1
?
?
?
?
70
0
0
0
0
0
0
0
0
3.43597383×10¹¹
0
0
0
0
0
0
?
?
≥1
?
?
?
?
71
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
72
0
256
0
65536
0
16777216
0
4.29496729×10¹⁰
6.87194767×10¹¹
1.09951162×10¹³
2.88115071×10¹⁵
2.81474976×10¹⁵
4.16728177×10¹⁸
7.20575940×10¹⁷
≥1.84467440×10²⁰
≥1
≥1
≥1
≥1
≥1
≥1
?
73
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
74
0
0
0
0
0
0
0
0
1.37438953×10¹²
0
0
0
0
0
0
?
?
≥1
?
?
?
?
75
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5.89619707×10¹⁹
?
?
≥1
?
?
?
?
76
0
0
0
0
0
0
0
0
2.74877906×10¹²
0
0
0
0
0
0
?
?
≥1
?
?
?
?
77
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
78
0
0
0
0
0
0
0
0
5.49755813×10¹²
0
0
0
0
0
2.06928088×10¹⁷
?
?
≥1
?
?
≥1
?
79
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
80
0
0
0
0
0
0
0
0
1.09951162×10¹³
0
0
0
0
0
0
?
?
≥1
?
?
?
?
81
0
512
0
262144
0
134217728
0
6.87194767×10¹¹
0
3.51843720×10¹⁴
0
1.80143985×10¹⁷
0
9.22337203×10¹⁹
0
≥1
?
≥1
≥1
≥1
≥1
?
82
0
0
0
0
0
0
0
0
2.19902325×10¹³
0
0
0
0
0
0
?
?
≥1
?
?
?
?
83
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
84
0
0
0
0
0
0
0
0
4.39804651×10¹³
0
0
0
0
0
≥1.84467440×10²⁰
?
?
≥1
?
?
?
?
85
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
86
0
0
0
0
0
0
0
0
8.79609302×10¹³
0
0
0
0
0
0
?
?
≥1
?
?
?
?
87
0
0
0
0
0
0
0
0
0
0
0
0
0
0
≥1.84467440×10²⁰
?
?
≥1
?
?
?
?
88
0
0
0
0
0
0
0
0
1.75921860×10¹⁴
0
0
0
0
0
0
?
?
≥1
?
?
?
?
89
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
90
0
1024
0
1048576
0
1.07374182×10¹⁰
0
1.09951162×10¹³
3.51843720×10¹⁴
1.12589990×10¹⁶
1.18932118×10¹⁹
1.15292150×10¹⁹
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1
≥1
≥1
≥1
≥1
≥1
?
91
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
92
0
0
0
0
0
0
0
0
7.03687441×10¹⁴
0
0
0
0
0
0
?
?
≥1
?
?
?
?
93
0
0
0
0
0
0
0
0
0
0
0
0
0
0
≥1.84467440×10²⁰
?
?
≥1
?
?
?
?
94
0
0
0
0
0
0
0
0
1.40737488×10¹⁵
0
0
0
0
0
0
?
?
≥1
?
?
?
?
95
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
96
0
0
0
0
0
0
0
0
2.81474976×10¹⁵
0
0
0
0
0
≥1.84467440×10²⁰
?
?
≥1
?
?
≥1
?
97
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
98
0
0
0
0
0
0
0
0
5.62949953×10¹⁵
0
0
0
0
0
0
?
?
≥1
?
?
?
?
99
0
2048
0
4194304
0
8.58993459×10¹⁰
0
1.75921860×10¹⁴
0
3.60287970×10¹⁷
0
≥1.84467440×10²⁰
0
≥1.84467440×10²⁰
9.96196237×10¹⁹
≥1
≥1
≥1
≥1
≥1
≥1
?
100
0
0
0
0
0
0
0
0
1.12589990×10¹⁶
0
0
0
0
0
0
?
?
≥1
?
?
?
?
101
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
102
0
0
0
0
0
0
0
0
2.25179981×10¹⁶
0
0
0
0
0
≥1.84467440×10²⁰
?
?
≥1
?
?
?
?
103
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
104
0
0
0
0
0
0
0
0
4.50359962×10¹⁶
0
0
0
0
0
0
?
?
≥1
?
?
?
?
105
0
0
0
0
0
0
0
0
0
0
0
0
0
0
≥1.84467440×10²⁰
?
?
≥1
?
?
≥1
?
106
0
0
0
0
0
0
0
0
9.00719925×10¹⁶
0
0
0
0
0
0
?
?
≥1
?
?
?
?
107
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
108
0
4096
0
16777216
0
6.87194767×10¹¹
0
2.81474976×10¹⁵
1.80143985×10¹⁷
1.15292150×10¹⁹
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1
≥1
≥1
≥1
≥1
≥1
?
109
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
110
0
0
0
0
0
0
0
0
3.60287970×10¹⁷
0
0
0
0
0
0
?
?
≥1
?
?
?
?
111
0
0
0
0
0
0
0
0
0
0
0
0
0
0
≥1.84467440×10²⁰
?
?
≥1
?
?
?
?
112
0
0
0
0
0
0
0
0
7.20575940×10¹⁷
0
0
0
0
0
0
?
?
≥1
?
?
?
?
113
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
114
0
0
0
0
0
0
0
0
1.44115188×10¹⁸
0
0
0
0
0
≥1.84467440×10²⁰
?
?
≥1
?
?
≥1
?
115
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
116
0
0
0
0
0
0
0
0
2.88230376×10¹⁸
0
0
0
0
0
0
?
?
≥1
?
?
?
?
117
0
8192
0
67108864
0
5.49755813×10¹²
0
4.50359962×10¹⁶
0
≥1.84467440×10²⁰
0
≥1.84467440×10²⁰
0
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1
≥1
≥1
≥1
≥1
≥1
?
118
0
0
0
0
0
0
0
0
5.76460752×10¹⁸
0
0
0
0
0
0
?
?
≥1
?
?
?
?
119
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
120
0
0
0
0
0
0
0
0
1.15292150×10¹⁹
0
0
0
0
0
≥1.84467440×10²⁰
?
?
≥1
?
?
≥1
?
121
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
122
0
0
0
0
0
0
0
0
2.30584300×10¹⁹
0
0
0
0
0
0
?
?
≥1
?
?
?
?
123
0
0
0
0
0
0
0
0
0
0
0
0
0
0
≥1.84467440×10²⁰
?
?
≥1
?
?
≥1
?
124
0
0
0
0
0
0
0
0
4.61168601×10¹⁹
0
0
0
0
0
0
?
?
≥1
?
?
?
?
125
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
126
0
16384
0
268435456
0
4.39804651×10¹³
0
7.20575940×10¹⁷
9.22337203×10¹⁹
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1
≥1
≥1
≥1
≥1
≥1
?
127
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
128
0
0
0
0
0
0
0
0
≥1.84467440×10²⁰
0
0
0
0
0
0
?
?
≥1
?
?
?
?
129
0
0
0
0
0
0
0
0
0
0
0
0
0
0
≥1.84467440×10²⁰
?
?
≥1
?
?
?
?
130
0
0
0
0
0
0
0
0
≥1.84467440×10²⁰
0
0
0
0
0
0
?
?
≥1
?
?
?
?
131
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
132
0
0
0
0
0
0
0
0
≥1.84467440×10²⁰
0
0
0
0
0
≥1.84467440×10²⁰
?
?
≥1
?
?
≥1
?
133
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
≥1
?
?
?
?
134
0
0
0
0
0
0
0
0
≥1.84467440×10²⁰
0
0
0
0
0
0
?
?
≥1
?
?
?
?
135
0
32768
0
1.07374182×10¹⁰
0
3.51843720×10¹⁴
0
1.15292150×10¹⁹
0
≥1.84467440×10²⁰
0
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1.84467440×10²⁰
≥1
≥1
≥1
≥1
≥1
≥1
?
N>0
x
9k
x
9k
x
9k
x
9k
2k
9k
?
?
9k
9k
3k
?
?
?
?
?
?

Reptile tilings' solutions count (including symmetric)

polyomino \ n²
P3 9-omino
1
0
0
0
0
0
0
0

See Also

P2 9-ominoMonominoes and Dominoes