POLYOMINO TILINGS

Polyomino Tilings

Select polyominoes for a set (currently 1 or 2), for which tilings should be shown.

Then click "Show" button.

You may also see list of all polyomino sets for which data is available here.


P1 octomino

Area: 8.

Size: 2x6.

Holes: 0.

Order: 2.

Square order: 8.

Prime rectangles: ≥ 5.

Smallest rectangle tilings

Smallest rectangle (2x8):

Smallest square (8x8):

Rectangle tilings' solutions count (including symmetric)

Blue number - strongly prime rectangle (which cannot be divided into two or more number of rectangles tileable by this set).

Green number - weakly prime rectangle (which cannot be divided into two rectangles tileable by this set, but which can be divided into three or more rectangles).

Purple number - prime rectangle (unknown if weakly or strongly prime).

Red number - composite rectangle (which can be divided into two rectangles tileable by this set).

Gray number - it is unknown whether rectangle is prime or composite.

Question mark (?) - solution count is unknown.

Click on underlined numbers to view picture with one solution.

w \ h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
N>0
1
0
2
0
0
3
0
0
0
4
0
0
0
0
5
0
0
0
0
0
6
0
0
0
0
0
0
7
0
0
0
0
0
0
0
8
0
2
0
4
0
8
0
32
9
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
128
0
0
11
0
0
0
0
0
0
0
0
0
0
0
12
0
0
0
2
0
0
0
388
0
0
0
≥1000
13
0
0
0
0
0
0
0
0
0
0
0
0
0
14
0
0
0
0
0
0
0
≥1000
0
0
0
0
0
0
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
16
0
4
0
16
0
64
0
≥1000
256
≥1000
≥1000
≥1000
≥1000
≥1000
≥1000
≥1000
17
0
0
0
0
0
0
0
?
?
?
?
?
?
?
?
≥1
?
18
0
0
0
0
0
0
0
≥1
?
?
?
?
?
?
?
≥1
?
?
19
0
0
0
0
0
0
0
?
?
?
?
?
?
?
?
≥1
?
?
?
20
0
0
0
16
0
0
0
≥1
?
?
?
≥1
?
?
?
≥1
?
?
?
≥1
21
0
0
0
0
0
0
0
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
22
0
0
0
0
0
0
0
≥1
?
?
?
?
?
?
?
≥1
?
?
?
?
?
23
0
0
0
0
0
0
0
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
24
0
8
0
68
0
584
0
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
25
0
0
0
0
0
0
0
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
26
0
0
0
0
0
0
0
≥1
?
?
?
?
?
?
?
≥1
?
?
?
?
?
27
0
0
0
0
0
0
0
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
28
0
0
0
96
0
0
0
≥1
?
?
?
≥1
?
?
?
≥1
?
?
?
≥1
?
29
0
0
0
0
0
0
0
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
30
0
0
0
0
0
0
0
≥1
?
?
?
?
?
?
?
≥1
?
?
?
?
?
31
0
0
0
0
0
0
0
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
32
0
16
0
304
0
≥1000
128
≥1
256
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
33
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
34
0
0
0
?
0
?
?
≥1
?
?
?
?
?
?
?
≥1
?
?
?
?
?
35
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
36
0
0
0
≥1
0
?
?
≥1
?
?
?
≥1
?
?
?
≥1
?
?
?
≥1
?
37
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
38
0
0
0
?
0
?
?
≥1
?
?
?
?
?
?
?
≥1
?
?
?
?
?
39
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
40
0
≥1
0
≥1
0
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
41
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
42
0
0
0
?
0
?
?
≥1
?
?
?
?
?
?
?
≥1
?
?
?
?
?
43
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
44
0
0
0
≥1
0
?
?
≥1
?
?
?
≥1
?
?
?
≥1
?
?
?
≥1
?
45
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
46
0
0
0
?
0
?
?
≥1
?
?
?
?
?
?
?
≥1
?
?
?
?
?
47
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
48
0
≥1
0
≥1
0
≥1
43008
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
49
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
50
0
0
0
?
0
?
?
≥1
?
?
?
?
?
?
?
≥1
?
?
?
?
?
51
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
52
0
0
0
≥1
0
?
?
≥1
?
?
?
≥1
?
?
?
≥1
?
?
?
≥1
?
53
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
54
0
0
0
?
0
?
?
≥1
?
?
?
?
?
?
?
≥1
?
?
?
?
?
55
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
56
0
≥1
0
≥1
0
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
≥1
?
57
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
58
0
0
0
?
0
?
?
≥1
?
?
?
?
?
?
?
≥1
?
?
?
?
?
59
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
60
0
0
0
≥1
0
?
?
≥1
?
?
?
≥1
?
?
?
≥1
?
?
?
≥1
?
61
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
62
0
0
0
?
0
?
?
≥1
?
?
?
?
?
?
?
≥1
?
?
?
?
?
63
0
0
0
?
0
?
?
?
?
?
?
?
?
?
?
≥1
?
?
?
?
?
64
0
≥1
0
≥1
0
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
≥1
?
N>0
x
8k
x
?
x
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

Smallest prime reptiles

Smallest prime reptile (8P1x4):

Reptile tilings' solutions count (including symmetric)

polyomino \ n²
P1 octomino
1
0
0
528
0
9001056
≥3200000
≥1
≥1

See Also

L2 octominoP2 octomino